AD-A284 402 O
R '
CDRL: BO1S
31 May 1994
DTIC

®
TE
UNISYS gsﬁt‘:—%wD

Command Center Library Model

Document

Comprehensive Approach to Reusable Defense
Software (CARDS)

Informal Technical Report

for public telecse and aole its

This document has been o.pptoved \
‘ distributiop is uniimit ed.

Comprehensive Approach to Reusable Defense Software

STARS-VC-B015/002/00
31 May 1994

o 94-29921
R G QUALITY SPECTED 8

94 ¢ 14 0¢3

- A
4

| s e D I EE BN e

INFORMAL TECHNICAL REPORT

For The

CDRL.: BO1S
31 May 19%4

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS

(STARS)

Command Center Library Model
Document Release 4.0

Comprehensive Approach to Reusable Defense Software

(CARDS)

STARS-VC-B015/002/00
31 May 1994

Data Type: Informal Technical Data
Contract NO. F19628-93-C-0130
Line Item 0002AB

Prepared for:

Electronic Systems Center
Air Force Material Command, USAF
Hanscom AFB, MA 01731-2816

Prepared by:

Azimuth, Inc.
and
Electronic Warfare Associates, Inc.
~ under contract to
Unisys Corporation
12010 Sunrise Valley Drive
Reston, VA 22091

Distribution Statement "A"
per DoD Directive 5230.24

P e o
A\'dv,

DiSt t ‘:

Al

Approved for public release, distribution is unlimited

Distibuye T

INFORMAL TECHNICAL REPORT

For The

CDRL: BO15
31 May 1994

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS

(STARS)

Command Center Library Model
Document Release 4.0

Comprehensive Approach to Reusable Defense Software

(CARDS)

STARS-VC-B015/002/00
3] May 1994

Data Type: Informal Technical Data

Contract NO. F19628-93-C-0130
Line Item 0002AB

Prepared for:

Electronic Systems Center
Air Force Material Command, USAF
Hanscom AFB, MA 01731-2816

Prepared by:

Azimuth, Inc.
and
Electronic Warfare Associates, Inc.
under contract to
Unisys Corporation
12010 Sunrise Valley Drive
Reston, VA 22091

CDRL: B01S
31 May 1994

Data Reference: STARS-VC-B015/002/00

INFORMAL TECHNICAL REPORT

Command Center Library Model

Document Release 4.0

Comprehensive Approach to Reusable Defense Software
(CARDS)

Distribution Statement "A"
per DoD Directive 5230.24
Approved for public release, distribution is unlimited

Copyright 1994, Unisys Corporation, Reston Virginia and Azimuth, Inc
Copyright is assigned to the U.S. Government, upon delivery thereto in accordance with the
DFARS Special Works Clause
Developed by: Azimuth, Inc and Electronic Warfare Associates, Inc. under contract to Unisys

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Techni-
cal Information Program Classification Schema (DoD Directive 5230.24) unless otherwise
indicated by the U.S. Sponsored by the U.S. Advanced Research Projects Agency (ARPA) un-
der contract F19628-93-C-0130 the STARS program is supported by the military services with
the U.S. Air Force as the executive contracting agent. The information identified herein is sub-
ject to change. For further information, contact the authors at the following mailer address:
delivery@stars.reston.paramax.com

Permission to use, copy, modify, and comment on this document for purposes stated under
Distribution "A" and without fee is hereby granted, providing that this notice appears in each
whole or partial copy. This document retains Contractor indemnification to the Government
regarding copyrights pursuant to the. above referenced STARS contract. The Government dis-
claims all responsibility against liability, including costs and expenses for violation of property
rights, or copyrights arising out of the creation or use of this document.

The contents of this document constitutes technical information developed for internal Govern-
ment use. The Government does not guarantee the accuracy of the contents and does not
sponsor the release to third parties whether engaged in performance of & Government contract
or subcontract or otherwise. The Government further disallows any liability for damages
incurred as the result of the dissemination of this information.

In addition, the Government (prime contractor or its subcontractor) disclaim all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and in
no event shall the Government (prime contractor or its subcontractor) be liable for any special,

-

CDRL: BO15
31 May 1994

indirect, or consequential damages or any damages whatsoever resulting from the loss of use,
data, or profits, whether in action of the contract, negligence, or other totious action, arising in
connection with the use or perfomance of this document.

Data Reference: STARS-VC-B015/002/00

INFORMAL TECHNICAL REPORT

Command Center Library Model

Document Release 4.0

Comprehensive Approach to Reusable Defense Software
(CARDS)

CDRL: BO1S
31 May 1994

Principal Author(s):

Aleisa Petracca Date
Tom Bock Datre
Approvals:

System Architect: Kurt Wallnau Date
Program Manager: Lorraine Martin Date

(Signatures on File)

CDRL: BO15
31 May 1994

Data Reference: STARS-VC-B015/002/00

INFORMAL TECHNICAL REPORT

Command Center Library Model

Document Release 4.0

Comprehensive Approach to Reusable Defense Software
(CARDS)

ABSTRACT

This Command Center Library Model Document (CCLMD) was developed under the Compre-
hensive Approach for Reusable Defense Software (CARDS) Program to help facilitate advances
in software reuse methods. It represents the current state of the CARDS Command Center Li-
brary Model. It is a "living" document, and will be updated with every Library release. This
document describes how software engineering relates and feeds back to Domain Engineering,
how Domain Engineering compares and contrasts to Library Modeling, and examines modeling
concepts and specialization/aggregation hierarchies.

This document is specific to release 4.0 of the Command Center Library Model in its description
of requirements, architectures, qualified components, system composition, and future direction.
The intended audience is anyone desiring an understanding of the CARDS Command Center
Library Model and wanting a view of the current Library release. A knowledge of software
engineering concepts is assumed.

vi

Public reperting burdes for this collsction of Information is catimated o avernge 1 hour por responss, lncinding the time for reviewing instructions, sesrching existing deds ssurcms, gathering
and malntaining the daia necded, and compleing and reviewing the collecfion of informution. Send comments regarding this burden stiowie or any other anpect of this collection of infor-
wation, incheding suggestions for reducing this burden, o Washingten Hurdquarters Services, Directerais for informaiion Operations and Reperis, 1215 Jufforsem Davie Highway, Sulle
1204, Avlingien, VA 22202-4302, and (o the Office of Management and Budget, Paperwerk Reduction Project (0764-91858), Washingies, DC 20563,

1. AGENCY USE ONLY (Leave biank) 3. REPORT TYPE AND DATES COVERED
Final

4. TITLE AND SUBTITLE

\Command Center Library Model Document (CCLMD) Release 4.9 F19628-93-C-0130

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8, PERFORMING ORGANI-
ZATION REPORT NUMBER
Unisys Corporation

12010 Sunwrise Valley Drive STARS-VC-B015/002/00

16. SPONSORING/MONI-
TORING AGENCY
REPORT NUMBER

Hanscom AFB, MA $1731-2816 BO1S

12a. DISTREBUTION AVATLARILITY STATEMENT

DISTRIBUTION “A™

13. ABSTRACT (Masimum 200 werds)

Tils Command Conter Library Mede! Decument (OCLMD) wan developed ander the Contral Archive fior Roussbie Defonse Software (CARDS) Program 10 help
faciitete advances in ssftware rense metheds. It represents the current state of e CARDE Command Conter Librory Model It Is s “Sving”’ Document, snd will be
wpdated with every Library relsase. This document describes how soltware enginesring refotes snd feods back te Dumain Englneering, how Domaln Engineering
compares end contrasto to Library Madeling, and examines medeling cancepts and specielization/sggregetion Merarchia.

‘This decument ls speciic to release 4.8 of the Commend Conter Library Mods! in is duscripion of requiremsents, srchitectures, gualified cosponents, system
compostion, and future divection. The intended sudience Is anyene desiriog an sndersianding of the CARDE Command Center Library Modet and wanting a view of

the current Library relcase. A knowriedge of software sngineering concepls s sssumed

15. NUMBER OF PAGES
74

8. SECURITY CLASSIFICATION OF | 19. SRCURITY CLASSIFICA- 0. LIMITATION OF
ABSTRACT

|

1 Introduction

Table of Contents

CDRL: BO15
31 May 1994

1.1 Sources of Input

1.2 Release Notes 4.0 2
2 Domain Engineering and Library Modeling 3
2.1 Scoping CARDS Repositories 4
2.2 CARDS Methodology 6
2.3 AdakKNET 7
23.1 Specialization 8
23.2 Individuation 8
2.3.3 Aggregation 9
2.3.4 The Model 10
2.4 Inferencing 10
2.5 Actions A1
3 Command Center Library Model 13
3.1 Scope of the CARDS Command Center Library Release 4.0 13
3.2 Background 13
3.3 CARDS Command Center Model History 13
3.4 Requirements 14
3.5 Architectures 17
35.1 The PRISM Architecture 19
3.6 Component Class Models 20
3.6.1 Features for that particular component class 21
3.6.2 Architectural constraints 22
3.6.3 Implementation constraints 23
3.7 Qualified Components 24
3.7.1 DBMS 25
3.7.1.1 Ingres 26
3.7.1.2 Oracle 27
3.7.2 Briefing System 27
3.7.2.1 Lotus_123 27
3.7.3 Database User Interface 28

vii

CDRL: BO1S

31 May 1994

3.7.4 Database Front-End 28
3.7.5 Muiti-Database Database Frontend 29
3.7.5.1 SmartStar 29
3.7.6 Mapping System 29
3.7.6.1 OILSTOCK 30
3.7.7 Geographic Information System 30
3.7.71 GRASS 31
3.7.8 Message Translator/Validator Generator 31
3781 GBMY 32
3.7.9 Network Manager 32
3.7.9.1 XNetManager 33
3.7.10 Office Automation Software 33
3.7.11 Electronic Mail Software K
3.7.12 Message Transfer Agent 35
3.7.121 PP 35
3.7.13 User Agent 36
3.7.13.1 zmail 36
3.7.132 XMH 36
3.7.14 Spreadsheet 37
3.7.14.1 Xspread 37
3.7.14.2 lotus123 (spreadsheet) 38
3.7.14.3 wingz_ss 38
3.7.15 Word Processor 38
3.7.15.1 Arbortext 38
3.7.16 Desktop Publisher 39
3.7.16.1 FrameMaker 39
3.8 Reference Model 39
3.9 System Composition 41
3.10 Component Qualification Tool 49
3.11 System Demonstrations 50
3.11.1 ascii_PRISM_msg_gen 50
3.11.2 bb_PRISM_msg_gen 50
3.12 Interoperability 50
3.12.1 DSRS Interoperability Components 51
3.12.1.1 Screen_And_Data_Manager_Package 51
3.12.1.2 Generic_Report_Handler 51
3.12.1.3 Safe_IO 51
3.12.1.4 String _Utilities_Package 51
3.12.2 ASSET Interoperability Components. 52
3.12.2.1 Ada_SQL_bindings 52
3.12.2.2 Optimization_and_Planning_Tools 52

viii

3.12.2.3 Reusable_Image_Processing_Package

CDRL: BO15
31 May 1994

52

3.12.3 Interoperability Metrics

52

3.13 Future Directions/Enhancements

53

3.13.1 Structural Changes

53

3.13.2 Action Changes

53

3.13.3 Anticipated Qualified Components

54

3.13.3.1 UNAS_SALE (Universal Network Architecture Service/Software Architect’s

54

Lifecycle Environment)
3.13.4 Anticipated System Demonstrations

54

3.13.4.1 WingZ

55

3.13.4.2 UNAS_SALE

55

Appendices

Appendix A References

Appendix B Glossary of Terms

Appendix C LIBRARY ACTIONS

List of Figures

Fig. 2-1 Software and Domain Engineering Process 3
Fig. 2-2 Implementation Based Reuse 4
Fig. 2-3 Architecture Based Reuse S
Fig. 2-4 Domain Based Reuse .. 6
Fig. 2-5 Specialization Hierarchy 8
Fig. 2-6 Aggregation Hierarchy 10
Fig. 3-1 requirement concept 15
Fig. 3-2 disa_ccdh_item function 15
Fig. 3-3 forces_employment_activity 16
Fig. 3-4 Aggregational view of plan_execution_7_c 17
Fig. 3-5 Relationship between Component Architecture and Services Subsystems.......... 19
Fig. 3-6 PRISM Generic Command Center Acrhitecture 20
Fig. 3-7 Spreadsheet FEature Tree.....c.ecscsssssssosssososseassssssessssssssessessssssassassssnsssssssssssssesssse 22
Fig. 3-8 Application Platform Specification Tree 23
Fig. 3-9 Hardware Tree 23
Fig. 3-10 Application Platform Sofiware Tree 23
Fig. 3-11 component_class and its children 24
Fig. 3-12 DBMS and its children 26
Fig. 3-13 Briefing_system and its child 27
Fig. 3-14 Database_User_Interface and its descendants 28
Fig. 3-15 mapping_system and its descendants 29
Fig. 3-16 message_translater_validator_generator and its child 32
Fig. 3-17 network_manager and its child 32
Fig. 3-18 office_automation_software and its descendants 33
Fig. 3-19 PRISM Technical Reference Model -40

Fig. 3-20 application_platform_entity and its descendants 41

STARS-VC-B015/002/00 31 May 1994

1 Introduction

This Command Center Library (CCL) Model Document describes a version of the Comprehensive
Approach for Reusable Defense Software (CARDS) CCL Model. This release replaces earlier
versions of this document. For descriptive purposes, this Model is referred to as CCL release
4.0, an encoding of the Generic Command Center Architecture (GCCA) of the July 1992
Portable, Reusable, Integrated Software Modules (PRISM) prototype, into the RLF (Reuse
Library Framework) [CARDS93a]. RLF is a part of the CARDS library infrastructure which
can be thought of as both a tool and a formalism.

CARDS library models are being iteratively developed. The original CARDS model is being
enhanced to reflect changes in the GCCA and to provide additional detail. The command center
library model will go through several significant revisions. CCL releases will include updates
to this document.

The purpose of this document is to:
* Describe this CCL. Model release.
» Describe how this release library model is related to PRISM.
* Provide the reader with an understanding of what CARDS library models represent

and how they are related to domain analysis.

Section 2 provides a top-level description of domain engineering and library models which may
be skipped if you are familiar with the topics. Section 2 also provides a high-level description
of the semantics of the RLF meta-model, i.e., the knowledge-representation formalism used to
encode library models. This description is useful for understanding parts of Section 3.

Section 3 describes this release, provides a high-level description of the aspects of the PRISM
architecture encoded in the release library, and describes in detail how this release library model
is related to the PRISM architecture. Section 3 also describes current plans for evolving this
release. ’

Appendix A is a bibliography of sources used to compile this document.
Appendix B is a glossary of terms vsed within this dccument.
Appendix C is a list of actions contained within this release.

Terms having a specific technical meaning are italicized the first time they are used and appear
in the glossary. Emphasized words appear in bold.

1.1 Sources of Input

An important requirement for any project attempting to perform a domain analysis, or to
represent a generic architecture for a class of software systems, is that several different system

Page |

STARS-VC-B015/002/00 31 May 1994

implementations be examined. For CARDS, so far, the primary input, and the only implemented
system, has been the PRISM generic command center. Information from PRISM has included
a generic architecture, access to PRISM source code which the CARDS team has examined to
uncover low level architectural details, and interaction with PRISM on issues of mutual interest.

CARDS has also used the Defense Information Systems Agency (DISA) Command Center
Design Handbook (CCDH) [DISA91] for very high level information, primarily in the area of
functional requirements, and also the Department of Defense (DoD) Technical Reference Model
{DOD92].

1.2 Release Notes 4.0

The following are additions and changes to the CARDS Command Center Library for Release
4.0. The additions follow the last release of the CARDS Command Center Library 3.3, on 25
February 1994.

Section 3.6, previously Qualified Components, now discusses the Component Classes. The
following sections are now organized:

3.7 Qualified Components

3.8 Reference Models

3.9 System Composition

3.10 Component Qualification Tool
3.11 System Demonstrations

3.12 Interoperability

3.13 Future Directions/Enhancements

Section 6.0, Library Actions, has been modified. The definitions are provided for each of the
actions, but the list of nodes at which these actions occur has been removed.

STARS-VC-B015/002/00 31 May 1994

2 Domain Engineering and Library Modeling

Although reuse may be approached in a variety of informal ways, CARDS position is that a
formal, systematic integration of reuse into the conventional software development process yields
substantially greater rewards. The basis for this increased formality is the emerging disciplines of
domain analysis and domain engineering. Figure 2-1 illustrates the corresponding relationships
between aspects of domain engineering and software engineering. The current state of research
and practice of domain analysis and domain engineering are well represented in an IEEE tutorial,
Domain Analysis and Software Systems Modeling [PRIES2]. The key points are that:

* Domain Engineering targets a well-defined application area (or domain) and results
in the creation of various products characterizing this domain (e.g., the domain
model).

* A key step in domain engineering is domain analysis, which is roughly analogous
to software engineering requirements analysis, except that domain analysis describes
the requirements of a family of systems (i.e., the requirements of the domain), while
software engineering requirements analysis focuses on the needs of a particular
system in question.

A domain model may encompass not only the results of the domain analysis (as just defined),
but may also include other aspects of the domain as well, including a generic architecture for
systems within the domain, and reusable components that satisfy the conditions of the generic
architecture.

— -

Software Engineering | | Domain Engineering

Requirements Analysis -~ Domain Analysis

Y

System Spedification .-}l g;:;frii:a?iﬁitmm

System Implementation .¢

¥

Generic Architecture
Implementation

Figure 2-1 Software and Domain Engineering Process

This itemization is not meant as a precise and fixed definition of domain engineering (since this
is a still-emerging discipline), but rather as a basis for understanding the relationship of CARDS
libraries to both domain engineering and software engineering processes.

Page 3

-

STARS-VC-B015/002/00 31 May 1994

Note that in the above summary the terms domain analysis, domain model and generic
architecture are used, but the terms library model and library modeling are conspicuously absent.
The reason for distinguishing library models and modeling from domain models and modeling
is twofold.

» Since CARDS is meant to provide a generic capability for constructing
domain-specific reuse libraries [CARDS94d], it is important that CARDS does not
preemptively select one set of domain engineering techniques at the expense of oth-
ers. Since different application domains (and different DoD programs) may be best
served by different domain analysis and domain modeling techniques, any such
CARDS selection would be premature and counterproductive.

* The decision of which domain engineering by-products to capture, and how to rep-
resent them, is a design decision based not only upon the nature of the domain and
the domain engineering analysis techniques used, but also on the anticipated use of
these products during software engineering. That is, the reuse repository acts as an
integrating agent between domain engineering and software engineering processes.
The form this integrating agent (i.e., the repository) needs to take is dependent upon
both endpoints of the integration relation - domain engineering and software
engineering. This point is elaborated in the following section.

2.1 Scoping CARDS Repositories

It is possible, as in Figure 2-2, to scope the repository to capture only the reusable components
produced as a result of the implementation phase of domain engineering processes. In Figure
2-2, this scoping is denoted as a parts library. The utility of parts libraries without including
some form of architectural context may seem limited, but can be justified in cases where the
domain architecture is unstable (i.e., still undergoing technological evolution or standardization),
or where a relatively small number of components in the library would not justify the investment
in maintaining an up-to-date architectural description. Note in Figure 2-2 that reusable parts can
be "used” during system implementation, but that an "understanding” of what parts are available
in a repository can aid in system specification.

In Figure 2-3, the scope of the repository has been extended to encompass the reusable
components as well as an architectural model capturing the relationships among the components,
and describes the purpose of the components within an overall systtm. One advantage of
such a library, denoted as generic architecture library in Figure 2-3, is that the additional context
information provided for reusable components can support the automatic composition of systems
or parts of systems. For example, if a component implementing part of a database subsystem
were selected for use in an application, the generic architecture would provide the basis for the
automatic selection and retrieval of any components that were implied by the selection of the
original component (e.g., SQL interface code peculiar to a particular relational database vendor).

Page 4

STARS-VC-B015/002/00 31 May 1994

Software Engineering | | DomainEngineering

Requirements Analysis Domain Analysis
i om i Generic Architecture
System Spedfiation Specification
h understand

System Implementation ~

| parts library

Figure 2-2 Implementation Based Reuse

In addition, a generic architecture library can make the browsing and searching of large libraries
simpler and more meaningful to engineers than, for example, faceted classification schemes re-
quiring strict usage of library-specific keywords. Note that in Figure 2-3 the addition of generic
architecture information in the library model extends the "use" relation to include both system
specification and implementation, while requirements analysis can be aided by "understanding”
the architecture supporting applications within a domain.

Figure 2-4, extends the scope of the repository to encompass all of the by-products of domain
engineering. This additional scoping broadens the focus of the reuse library to incorporate
domain variance as well as domain commonality. While generic architectures focus on what
is the same across applications in a domain, a domain model also captures differences across
applications in a domain. This broadened focus can support the capture of design rationale for
alternative designs of the underlying generic architecture; this, in turn, would be instrumental
for evolving the domain architecture in response to new technology and new demands on the
previously developed applications.

In Figure 2-4 the advantages of a domain model library are shown both by illustrating the "use"
relationships present throughout software engineering processes, and by illustrating the potential
feedback loop from software engineering to the domain model. This is done by capturing the
variations of each successive system developed from the reuse library and why these systems
varied.

Page 5

STARS-VC-B015/002/00 31 May 1994
Software Engineering || Domain Engineering
|]
Requirements Analysis
\\(|
System Specdfiation

generic
architecture

System Implementatim‘h brary

Figure 2-3 Architecture Based Reuse

Software Engineering

Requirements Analysis -,

System Spedfimtion

S Im t
ystem Implemen aﬁm‘_‘

\

Domain Engineering

1

Feedback and
domaia model
avdution

Figure 2-4 Domain Based Reuse

2.2 CARDS Methodology

CARDS views a library as a library model and a set of applications, and the construction of
a library model as a design activity balancing various requirements. What goes into and what
comes out of a library is dependent upon the library modeling formalism used, the kind of
domain analysis conducted, and the kind of library applications needing to be constructed to

Page 6

-

STARS-VC-B015/002/00 31 May 1994

support the anticipated system engineering processes. The library model includes information in
addition to that derived from, or pertinent to domain analysis [CARDS94d].

There are two approaches to implementing a reuse library: component-based and model-based.

» Component-based libraries are organized around a collection of reusable compo-
nents. The underlying operational concept is that of search and retrieval of
individual components. Components found in such libraries are classified in broad,
generalized categories.

* Model-based libraries use domain models as a foundation for library organization
and a framework for supporting applications exploiting these models to automate
various library services. Model-based libraries encompass information such as do-
main knowledge, generic architecture specifications, requirements, and
implementation restrictions, as well as software artifacts [CARDS94d].

One of the visible efforts of library analysis is that of organizing the storage and retrieval of the
reusable components. CARDS approach is fundamentally model-based (the motivation has more
to do with the retrieval of components, and with the capture of reusable information that is lost
in component-based libraries, than with storage). The idea is that one of the major obstacles to
reuse is the difficulty potential reusers have in locating reusable products. Models are a very
powerful mechanism for organizing components and facilitating user access to them

A CARDS model is a representation of a specific type of application area (often referred to as
a domain) which is simply a limited subject area. Because it mirrors the organization of the
part of the real world using the components being stored, it provides a means of organizing and
accessing a store mechanism. Components are "attached” to the model in the spots representing
their use in real world applications. The fact that it mirrors the application area makes it a natural
way for the user to locate the components they are interested in. This user friendliness is one
of the main motivations for organizing the repository storage and retrieval around the model.

The other motivation is that the model is the starting point for potentially many powerful tools
to aid the user in reuse related activities. Because the model is "computationally accessible”
and is a detailed picture of what is involved in the domain, it is an excellent starting point for
building tools that can "reason” about the various elements involved in the domain, including
the specific components being stored in the library. Inference engines are used to analyze the
information encoded in the model and apply various types of understanding to produce results
such as software configuration.

The initial scope of the CARDS CCL includes both the high level PRISM architecture and
descriptions of the components used to implement this model in demonstration prototypes. Thus,
this library release can be considered a generic architecture library as depicted in Figure 2-3.
As the command center model matures, the CARDS library evolves from a generic architecture
type to a domain model type, permitting more powerful tools and information for the user. This
domain model library will incorporate more information pertaining to domain analysis and will
receive user feedback on the various instantiations of the systems within the library.

Page 7

© STARS-VC-B015/002/00 31 May 19%

Though a domain analysis may be conducted to a large extent without regard to the final form of
its products, the knowledge acquired can be more fully realized once it is harnessed by a library
model in some formalism. RLF is the mechanism used to implement the CARDS CCL since it
integrates a knowledge representation scheme, rule-based inferencing and a graphical browser.
The description of the nature of the model requires an overview of the encoding mechanisms.

2.3 AdaKNET

RLF has a knowledge representation scheme, called AJaKNET, which facilitates the classification
of library components. AdaKNET can be thought of as a graph, in which the nodes represent
general categories or specific objects, and the edges represent relationships between the nodes.
Nodes, representing generai classes of knowledge, are called concepts or categories. There
are two basic types of relationships, specialization (“is-2") and aggregation ("has-a"), described
below. Two kinds of hierarchies are built with the concepts and relationships: specialization
and aggregation hierarchies.

2.3.1 Specialization

There is exactly one specialization hierarchy in any given "model”. The specialization hierarchy
is a way of defining the concepts. It can be thought of as a glossary, and can be compared to
the need to declare variables in a traditional computer programming language. The top level
concept is usually given a very generic name, such as thing or entity, and all other concepts are
defined to be specializations of it. This hierarchy is made by asserting that the "is-a" relationship
holds between two concepts. This relationship is unidirectional.

The assertion is that less_general_concept specializes more_general_concept. Or,
less_general_concept is-a more_general_concept.

As depicted in Figure 2-5, animal- specializes thing, mammal specializes animal, and cow
specializes mammal. The modeler can build a set of concepts representing all the parts of
the domain which need to be referenced. In this view, concepts are represented as a single oval
and the specialization links are represented as double lined arrows. A concept represents abstract
categories of concise things and may also be called a generic concept, a category or a class.

The specialization hierarchy provides the vocabulary for an AdaKNET model. Because every
concept in the model is defined in this hierarchy as being a specialization of some other concept,
we have a way of understanding the context of any concept we encounter in the model.

Page 8

STARS-VC-B015/002/00 31 May 1994

(‘Bossic’)

Figure 2-5 Specialization Hierarchy
2.3.2 Individuation

Within the specialization hierarchy, the top-level node is very generic and becomes more
and more specific at each level until finally the leaf nodes may contain specific examples of
their parent concepts. A leaf node representing a particular component or elemental piece of
information instantiated from its parent concept is known as an individual or object. It also may
be known as an individual concept, or an instance.

Individuation is the relationship between a parent concept and the instantiation (individual) of that
parent concept. Individuation lies within the specialization hierarchy and defines an individuation
link between a concept and an individual.

Referring to Figure 2-5, take note of the individual concept called ‘Bossie’. In this example,
‘Bossie’ is our specific cow. Yet, ‘Bossie’ is but one of an infinite number of possibilities for an
instantiation of the concept cow. As shown in this Figure, individuals are represented as double
ovals and the individuation link is represented as a three lined arrow.

2.3.3 Aggregation

Each of the concepts in the specialization hierarchy may have relationships of the "has-a" nature
with any other concept in the model, including itself. These relationships may express attributes,
characteristics, features (as the term is used in FODA [KANG90]), functional capabilities,
requirements or metrics, any relationship that exists between two concepts which is not a

Page 9

STARS-VC-B015/002/00 31 May 199¢

specialization relationship. Since any concept may have aggregation hierarchy under it, and
it is not required that all the units of aggregation structure tie together, the model usually
contains many separate pieces of aggregation hierarchy. While every concept must appear in the
specialization hierarchy, it is not necessary for every concept to be involved in an aggregation
relationship.

The aggregation hierarchy is built by beginning with the concept representing the thing being
modeled, such as command_center, and listing all of its has-a relationships. These relationships
show substructure, characteristics or other sorts of relationships and are often called roles. Each
of these relationships has a name, type and range. The type is the concept being pointed to. The
range is an ordered pair, zero to infinity, or some narrower specification, including a converged
range such as 2 to 2. This value represents how many copies of that relationship may/must exist
simultaneously.

Each concept automatically inherits the aggregation relationships of its ancestors in the
specialization hierarchy. AdaKNET supports muitiple inheritance, so a concept having more
than one parent inherits the aggregation relationships of each. The range, and the possibie
values of the type, may be narrowed on subsequent levels of the hierarchy (by the concepts that
inherited them) to support the logical structure of the aggregation hierarchy. This is called role
restriction.

Referring to Figure 2-6, notice that the individual ‘Bossie’ has what is known as a filler that
satisfies its predecessor’s inherited relationship of makes_milk to the type milk. Individuals must
have such aggregational relationships to other individuals. In this case the individual type is
‘Bossie’s milk’ which is an individuation of the concept milk.

2.3.4 The Model

These two types of hierarchy are completely intertwined. In most cases what the modeler and
the end user think of as "the model” is actually a subtree (really & subgraph, but it is generally
thought of as a tree) rooted at the concept representing the thing to be modeled and all the
aggregation hierarchy under it.

A full model includes much more than the structural organization expressed in AdaKNET, with
the inferencers, discussed below, being the most important other part.

However, in this document the focus is on the model’s structural part because the structure is
the aspect that is most usefully described. Discussing why the structure was organized as it was
communicates something about the modeler’s understanding of the command center domain.
In contrast, the inferencers are aids for accomplishing tasks. Their actual implementation is
irrelevant to the end user.

Page 10

STARS-VC-B015/002/00 31 May 19%4

Figure 2-6 Aggregation Hierarchy

2.4 Inferencing

There are two inference engines associated with AJaKNET. AdaTAU was written in conjunction
with AJaKNET and is a part of the RLF. It is tightly integrated with the Graphical Browser.
CLIPS (C Language Integrated Production System){GIAR92] is used in inferencing tools that
work on the AJaKNET structure. CLIPS was developed for the National Aeronautic and Space
Administration (NASA) and is available for a very moderate fee, or free for use on Air Force
or NASA projects. These two inference engines provide similar basic capabilities, but CLIPS
is more computationally powerful and also has the capability of querying the AdaKNET model
structure.

Both inference engines permit the modeler to write inferencers, units of code expressed as rules
about the model. These units, sometimes called rule-bases, are associated with specific concepts
in the AdaKNET model.

2.5 Actions

Any executable program or process, called an "action”, may be associated with any concept by
the creator of the library. The mechanism of invoking an "action” at a concept is typically used
to view textual information associated with the concept, but has general applicability to a wide
variety of needs.

Actions can be thought of as strings which are executed in an operating system when the action
is invoked. Action “targets” are the strings representing the object upon which the action acts.

Page 11

STARS-VC-B015/002/00 31 May 1994

For example, a file describing the database management system INGRES may be viewed at the
concept ingres by including an action which executes the command:

preview ingres_desc.txt

In this example, "ingres_desc.txt" is the action target. The same action, with a different action
target, may be made available at the concept sybase which executes the command:

preview sybase_desc.txt

Actions are inherited by concepts in much the same manner as roles. All subconcepts are
subsumed by a concept declaring an action will have that action available. Actions can also be
inherited along several specialization links in the case of multiple inheritance.

Actions, again much like roles, can also be restricted at subconcepts below the concept where
they are declared. Action targets can be renamed at subconcepts, regardless of inheritance.

Page 12

STARS-VC-B015/002/00 31 May 19%4

3 Command Center Library Model

The CARDS command center model is the basis for a domain-specific software reuse library for
the command center domain. The current primary source of information about command centers
is the PRISM Program at ESC/ENS, Hanscom AFB. PRISM is designing a generic architecture
and developing components for prototyping Air Force command centers. This chapter describes
how the PRISM work relates to the current CARDS library model.

3.1 Scope of the CARDS Command Center Library Release 4.0

The initial scope of the CARDS CCL included both the high level PRISM architecture and
descriptions of the components used to implement the model in demonstration prototypes.

This scoping remained the primary emphasis by CARDS throughout Phase 2, although some
significant extensions of the CARDS CCL to capture useful variant information (i.e., domain
model library information) have been produced as a byproduct of the system composition tool
and component qualification process development.

CARDS libraries are produced by encoding various results of domain engineering processes
into the RLF. The decision about what kinds of domain engineering by-products to encode
(i.e., determining the library scope) is a design decision which must consider the nature of the
domain, the domain engineering processes, and, especially, the demand-side software engineering
processes which will make use of CARDS libraries.

3.2 Background

The Generic Command Center (GCC) Project (the forerunner of PRISM) integrated components
for use in command centers. [ESD90] states:

"The Generic Command Center Phase 2 prototype is an implementation of a portion of the
Generic Command Center (GCC) architecture. The purpose of this prototype is to validate
the concept of building command centers by integrating large reusable components.
The required functionality is that of processing... messages; establishing a database;
displaying information in a geographic information system; creating tables of information;
and creating briefings that interface with the database. The implementation was consistent
with the GCC architecture and used several commercial off-the-shelf (COTS) products as
components... The results of the GCC Phase 2 are extremely promising toward the concept
feasibility of integrating large software components for application in the Command
Center domain.”

PRISM has a more ambitious goal of developing a real generic architecture for command centers.
It proposes to provide a user with 80% of the required resources to produce a new command
center as well as information on acquiring or producing the remainder. The CARDS library
model is incrementally encoding information generated by PRISM.

Page 13

STARS-VC-B015/002/00 31 May 1994

3.3 CARDS Command Center Model History

The initial library model was encoded in RLF while the GCC Phase 2 prototype was being built.
The first model, encoded fairly quickly in cooperation with GCC and other ESC/ENS personnel,
was available for an Initial Operating Capability (I0OC) demonstration in late 1991. The initial
model was primitive, but was a useful demonstration of many of the features of the RLF and
the CARDS Command Center Library.

Release 2.0 of the Command Center Library included a refinement of the library model made
in response to a new release of the operationsl library software. The model was updated
substantially, with major changes to the high level structure of the command center aggregation
hierarchy, the addition of the message processing subsystem, and an initial allocation of military
requirements to computational subsystems to produce the current model.

Release 3.0 of the model retained the same high level structure as Release 2.0 and differed
priznarily by addition of lower level concepts to represent new components.

Release 3.1 of the model retained the same high level structure as release 3.0, with the addition
of several new components and aggregational relationships for many of the component classes.

Release 3.2 of the model retained all of the features of release 3.1, with the addition of
trilateral interoperability, interoperability metrics and system demonstrations. CARDS has
implemented intercperability between CARDS, ASSET (Asset Source for Software Engineering
Technalogy), and DSRS (Defense Software Repository System). This addition has prompted the
addition of Sections 3.10, Interoperability, and 3.10.,1 Interoperability Metrics. The addition of
demonstrations opens the door for future demonstrations of various systems in the library and
prompted the addition of Sections 3.9 System Demonstrations, and 3.11.4, Anticipated System
Demonstrations, to this document.

Release 3.3 of the model reflected modifications to the Command Center Library. These
modifications included the addition of new nodes and graphical images, removing and renaming
various nodes, and adding and modifying selected relationships associated with specific nodes.

Release 4.0 of the model partitions the CCL model into smaller, more manageable models. The
CCL was partitioned into seperate models in the following manner: an architectual model which
contains the Architecture and Technical Reference Model hierarchies; a requirements model
which contains the DISA CCDH and TACE requirements categories and objects; and models
for each component class, including sub-component classes for which there are criteria.

CARDS will see an increasing involvement with various organizations through partnerships,
both of the command and control and other domains. The goal behind such partnerships is not
necessarily support for the command center model, but promotion of reuse aduption. CARDS
will also see an increase of work in the area of architectures in two ways:

1. The "fleshing” out of the GCC architectural representation.

Page 14

STARS-VC-B015/002/00 31 May 1994

2. The investigation of alternative architectural views, including architectures other
than the GCC, and tools other than the RLF.

3.4 Requirements

The requirements section of the model begins with the requirement node. The requirement
node is the ancestor of all military functions and activities required in a command center. The
specializations in the requirement subtree divides requirement into disa_ccdh_item and tace_item.
disa_ccdh_item is specialized by function and activity (Figure 3-1).

There are two ways of looking at the functions and activities in the requirements area of a GCC:
(1) as functions and activities that must be contained by a GCC (according to disa_ccdh) or
(2) as a path for finding activities corresponding to functions and the components that must be
utilized to perform those activities.

_’ o
activity
5o /
/ PISA_CCOH_Nam— s on
foncties
’ o=
[| -
wuire m\‘_’ -

TACE_Rtam

Figure 3-1 requirement concept

Page 15

STARS-VC-B015002/00 31 May 1994

o
FR_status _menitoring

-
dacision_making

o
employmant_szacstion_eof ferces

[+ -4
ezarcisa_training

[«
forta_smpisymant_menitaring

o
hostiitias_termination_nagetistion

NS

Ly

fanction

a—p =
ops_planning_scheduling

o
erdars_mission_instr_reporthark

o
shinating_assessmant

o
sitsating_menitering

o2
systams_contrel

i

Figure 3-2 disa_ccdh_item function

According to the DISA CCDH [DISA91}, and augmentation by PRISM, the military function-
ality of a command center is divided into eleven basic functions. Each of these functions is
divided into an arbitrary number of activities, with a total of 76 activities (see Figure 3-2).

The DISA CCDH further breaks down each activity into tasks. These tasks are not represented in
the current model as they are at a level of detail not currently necessary for modeling purposes.

Note the 11 DISA CCDH functions (in Figure 3-2) that must exist in a command center. The
corresponding activities of the function forces_employment_activity are shown in Figure 3-3.
These are the activities that must be performed to accomplish forces_employment function.
Figure 3-4 shows the aggregational view of the activity plan_execution_7_c. The links to the
components that make up the activity can be seen.

Page 16

STARS-VC-B015/002/00 31 May 1994

o—p
toovd_enecmtion _mitiation_7_4

o—h ™
forca_sonrtie_lammch 7 o

o—ph o
intercepu_prefilas_assigs_wunat_7.a

-—’ ne o—’ o
forces_smplsymant_attivity parform_retargeting_7_g

o—ph O
ploa_asacwtion_7_¢

°__§ ot
reconmitute_rediruct_forcas_?_¢

o—h o1

woapen_mrike_erdars_?_»)

Figure 3-3 forces_employment_activity

The TA/CE Command Center Systems Architecture Handbook [DCA90] is another functional
decomposition of the command center and is represented by the tace_item in the model. The
TA/CE decomposition is also not represented in the model, but the tace_item stub is present for
the possibility that its functional decomposition of the command center will be included in the
future.

Most of the activities are connected to the software component classes that implement them by
aggregation links. These links will permit the system composition tool to determine for the user
which components they need, based on the user’s specification of what military functionality
they wish to have.

3.5 Architectures

The CARDS Command Center Architecture is based on the PRISM Command Center Software
Architecture. To uncover the CARDS architecture, we must first discuss the PRISM Command
Center design.

Page 17

-

T

|

STARS-VC-B015/002/00 31 May 1994

t—.un.mn.n y " w——
m w m_—

-

Y afevars_Sestanertation_comtraits (U inty) e St refrems

Figure 3-4 Aggregational view of plan_execution_7_¢

PRISM has used the DoD Multicommand Required Operational Capability for Command Cen-
ters [DOD91] to decompose & generic command center into its constituent subsystems. This
division specifies four subsystems:

» Pacility
e Communications
¢ Information Processing

* Briefing and Display

The Facility Subsystem includes such items as furniture, building components, and the design
of the functional spaces, including providing utilities such as heat, light, power, etc.

The Communications Subsystem comprises the hardware, software and protocols required to
interconnect equipment within the command center and to terminate external communication
links entering the command center. This subsystem includes voice communications but excludes
intra-command center communications covered by the Information Processing and Briefing and
Display Subsystems.

The Information Processing Subsystem (IPS) is comprised of External Interfaces, Networking,
Mission Processing, and Human-Machine Interfaces. The functionality of this subsystem is
expected to be physically distributed to the extent permissible within security constraints. Local
area networks (LLANs) will exist in individual command center work spaces. The number
and location of servers and peripheral devices in various command center work spaces will
vary depending on security and performance requirements. Gateways and bridges will permit
communication among the various LANs and with other automatic data processing (ADP)
systems. The IPS is the heart of the command center model.

The Briefing and Display Subsystem (BDS) is comprised of graphics workstations, video switches
and controllers, large screen displays and monitors, video teleconferencing, and other audiovisual

Page 18

STARS-VC-B015/002/00 31 May 1994

support equipment. The BDS is connected to the backbone network. Such connections provide
a path for obtaining digitized graphics developed on IPS workstations. Direct connections from
selected IPS workstations to the video switch permits presentation of the graphics on large screen
displays and monitors which are located in various work spaces throughout the command center.

As in the previous version of the CARDS library, the IPS is still the only subsystem implemented
by PRISM and it is the only subsystem discussed in this document.

3.5.1 The PRISM Architecture

This section describes the command center software architecture. The components are grouped
into four sets of functioas:

» External Interfaces
* Mission Processing
*» Human-Machine Interface

* Network System

The relationship between the services outlined in the previous section and the functional areas
of the architecture is shown in Figure 3-5. As can be seen in this diagram, the functional areas
of the architecture are related to the IPS, which itself depends upon both the Communications
and Briefing and Display Subsystems.

Services

Subsysems

Communications

Pigure 3-5 Relationship between Component Architecture and Services Subsystems

Page 19

STARS-VC-B015/002/00 31 May 1994

PRISM’s software architecture, upon which the general architecture portion of the library model
is based, is shown in Figure 3-6. It is also represented as a graphic image in the CARDS CCL
Model. The image is located at the PRISM_Architecture node, and can be viewed by selecting
the "Picture Image" action from the pop-up menu.

Messages, in either ASCII or bit-based format, are routed through the Interprocess Communi-
cation component to the Message Translator and Validator (MTV), where they are validated
and translated into a ‘vanilla’ SQL format. The translated, validated messages are submitted to
the Database Manager (through the Database Broker) for entry into the database. The Database
Manager has the capability to logically separate actual and exercise databases and place informa-
tion in appropriate tables. The operator interfaces with the GIS through an X Window Interface.
The primary function for the GIS is to provide the following capabilities:

* Present basic vector map data

* Zoom and pan

* Display of near real time tracks

* Filter map features (e.g., track, roads, rivers, etc.)

* Calculate and display bearing/range line

The capability to produce tables of information through ad hoc queries is required upon operator
command through the X Window Interface. The Table Generator is required to produce SQL
commands that are routed through the System Manager to the Database Manager and queried
results are routed back to the Table Generator.

Finally, a Briefing System capability is implemented through the X Window Interface. The
primary requirements of the Briefing Display Subsystem are to have a hypermedia capability;
to be capable of producing charts, graphs, and slide shows; and to interface to the Database
Manager using SQL. The latter capability allows for the automatic update of predefined charts
as in a typical recurring stand-up briefing. Additionally, the Briefing System is capable of
accepting scanned images.

The concepts under subsystem represent large command center subsystems. Concepts under
disa_subsystem are the main hardware/software command center subsystems defined in the DISA
CCDH including briefing_display_hardware, communications, facility, and ips (information
processing subsystem). Concepts under gcc_group are software subsystems of the ips that
were defined by PRISM including human_machine_interface, network_mgt_subsystem, external_
interface, and mission_processing. As in Version 3.2 of the library, only these ips subsystems
have been modeled in any great detail.

Page 20

JHOMIIN

31 May 1994

ONISS3I00Hd NOISSIN
S3DVAHILINI TYNUIDGA
JHOMILIN v3HV V001 28 bny Z1L pasiaay

SHIIND)
ANYVHNNOD
¥3IWi0

SNIALEAE
HILNINOD
H3HLO

SHOSNIS

Figure 3-6 PRISM Generic Command Center Acrhitecture
Page 21

8INYIBNYIIY 191U PUBLIWIO?) IIBUSE) INSIH S

STARS-VC-B015/002/00

—= -

| STARS-VC-B015/002/00 31 May 1994

3.6 Component Class Models

Each component class is modeled using a standard organization. There are three major
classifications for the information: 1) features for that particular component class, 2) architectural
constraints and 3) implementation constraints. For each, there is & relationship between the
component class and the criteria. The criteria are specified as either categories or objects
organized into a semantic network.

3.6.1 Features for that particular component class

These features are functions the component class should perform with respect to a command
center. There are features which are required and those which are optional. For example, a
feature of a word processor is that it should generate a table of contents.

In the CCL, these criteria can be found under the feature tree. Features which may be common
among component classes are normally modeled as direct children of the feature category. Others,
more specific to a component class, may have a parent indicating the component class to which
they belong. For example, features unique to a spreadsheet exist under a category named,
ss_feature (spreadsheet feature) (Figure 3-7).

-_..D.!
absolute coll addressing
..—.’l!
°_9 ot comwbo el addressos range mame
call_addressing
._.’ll
rafative el addresstaq
....’!l
o—p Gt
ss_calculation ——n—put
b_,b -1]
ss_feature
- .—b'l
\ - cohimn row commantds
o—p 01
ss_command “—-u-—pet
.—D.I

Figure 3-7 Spreadsheet Feature Tree

3.6.2 Architectural constraints

This set of criteria indicates how the component classes fit together to form a command center
architecture. For instance, a briefing system must be able to accept data from a word processor. In
addition, where required, the criteria indicate how those connections should be impiemented. For

Page 22

STARS-VC-B015/002/00 31 May 1994

instance, a briefing system should be able to accept data from & word processor via interprocess
communication.

These criteria are modeled as relationships among component classes. They may appear also as
children under the application_platform_specification tree (Figure 3-8).

id
o—p B _.—-—'“‘-"'—'..-’ A
chamctar, data -
1]

_____,__.__._-——-o-p
o—p ™ Sata_typa_spec——u_por
Dowage

data_luterchange_spec
ar

r mlluﬂn_pmfom-xpnmwln__o - .______________._..---—)
speruting_system_spac

Figure 3-8 Application Platform Specification Tree
3.6.3 Implementation constraints

This set of criteria specifies the supporting hardware and software required for the component
class. An example of a hardware constraint may be that the component must run on the Sun
platform. An example of a software constraint may be that the component must run under X11
Release 4.

In general, hardware constraints are modeled under the hardware tree (Figure 3-9) and software
constraints under the application_platform_software tree (Figure 3-10).

keybeoard

o_’ ot
coler_meniter
o—p O
mesltor™,_4 a1
L-—p ot monechrome_meniter
Mrdware, -

\o_b -1
medse
...---'-"""o_9 o

op O
piatferm sund

Figure 3-9 Hardware Tree

Page 23

STARS-VC-B015/002/00 31 May 1994

et
/ i

eter_ iotermacs_seftware ohic. "'""‘{
op O IR, L
windew_system bl -

Figure 3-10 Application Platform Software Tree

Features and constraints are either required by the command center (critical features or con-
straints) or optional to the command center. A critical criterion will have a relationship range
of at least one as the minimum [may want to make a reference to the RLF Modeler’s Manual
Chapter’s 3 and 4]. For example, a critical criterion for word processor’s with respect to a com-
mand center is the ability to generate a table of contents. That would be modeled as:

* does_generate_table_of_contents (1 .. 1) of table_of_contents;

A non-critical criterion will normally have a relationship range of zero as the minimum. For
example, a non-critical criterion for word processor’s is the ability to create a table. That would
be modeled as:

» creates_table (0 .. 1) of table.

Page 24

STARS-VC-B015/002/00 31 May 1994

3.7 Qualified Components

._.. on
briefing_systom

o—p =
dntabase_user_lntesrface

o
componat_ciass

—p
mapping_syston

o
messade_tmashner. validator_penenter

Figure 3-11 component_class and its children

Component qualification (see Figure 3-7) is the process of acquiring and evaluating compo-
nents for a domain specific library. The components are qualified as to whether they fit within
a particular domain. The emphasis is on supporting domain requirements. The component is
classified as to what subsystem of the generic architecture it satisfies. Components are mea-
sured against domain criteria, which are measurements of form, fit and function applied to the
command center domain. These are a composite of domain, architecture and implementation
constraints. Components are also considered by domain independent aspects of common criteria
such as performance, reliability, maintainability, etc. After the components have been qualified,
they are placed under component_class category.

Page 25

STARS-VC-B015/002/00 31 May 1994

3.7.1 DBMS

The Database Management System (DBMS) stores and manages tables of data the command
center will query and modify during daily activities. The Database Manager should support a
relational data model and a client/server architecture. The important and widely used large scale
database products now support the client/server architecture.

The DBMS (Figure 3-8) has performance constraints placed upon it by a command center
which must be met. An example of a performance requirement is from SAFWCCS: a database
manager’s response time must not exceed two (2) seconds when performing any single data table
transaction.

]
- "

parns [4

Figure 3-12 DBMS and its children

3.7.1.1 Ingres

Ingres represents release 6.4 of a relational database management system (RDBMS) developed
by Ingres Corporation. The RDBMS has been in release since 1983 and about 50,000 licenses
have been granted. Ingres provides batch, stored procedures, and interactive Structured Query
Language (SQL) data access and manipulation.

Ingres also provides mutual exclusion provisions to provide concurrent data access. The default
and lowest level locking for Ingres is page level. Ingres employs locking at various levels;
however, the only locks subject to user control are at the table and page levels. Predefined
access restrictions are provided to allow application programs to concurrently read and/or write
a shared database. Provisions are available for the owner of a database to restrict all or part of
the data in the database. Ingres also provides automatic full and partial dump facilities, and the
capability for several application programs to concurrently read and/or write the shared database
subject only to predefined access restrictions. Provisions are made for the owner of a database
to restrict access to all or part of the data in the database.

References to security issues are sparse; however, the vendor claims that Ingres has substantial
Command Center (C2) features, and that the next release will have full C2 features. Ingres
provides physical and logical separation of data at different security classification levels.

In the CARDS library the following are available for the component Ingres:

* Product evaluation reports in ASCII and postscript formats

Page 26

STARS-VC-B015/002/00 31 May 1994

¢ Product assessment on line in model

» Product description in ASCII format

3.7.1.2 Oracle

Oracle represents release 7 of a RDBMS developed by Oracle Corporation. The Oracle RDBMS
has been in release since 1978 and approximately 400,000 licenses have been granted. Oracle
provides support to over 80 platforms.

Oracle7 provides batch, stored procedure, and interactive SQL data access and manipulation,
and integrity constraints and triggers as solutions to managing data base data integrity rules. It
implements locks to prevent destructive interaction between users accessing the same resource.

Oracle7 and Trusted Oracle (Oracle7 with multi-level security) comply with the National
Computer Security Center’s C2 and Bl Orange Book Security Criteria levels, respectively.
Oracle7 provides extensive auditing, allowing the auditing of data accesses, successes and
failures, and logons.

Oracle7 supports client/server operation, a dedicated server architecture in which every user
process connected to Oracle7 has a corresponding server process, a multi-threaded architecture
in which a small number of shared server processes can perform the same amount of processing
that would otherwise be done by many dedicated server processes, distributed processing, location
transparency, network transparency, and On-Line Transaction Processing.

In the CARDS library the following is available for the component Oracle:
» Product evaluation reports in ascii and postscript formats
» Product assessment on line in model

e Product description in ascii format

3.7.2 Briefing System

/
—p o

briufing_system

Figure 3-13 Briefing_system and its child

Briefing system (Figure 3-9) is a class of components facilitating the generation of textual and
graphical presentations on screen or paper. These components use mission data from command
center databases to create bar charts, pie charts and other decision support displays for operations
briefings.

Page 27

STARS-VC-B015/002/00 31 May 1994

3.7.2.1 Lotus_123

Lotus 1-2-3 is a commercial briefing system software package allowing users to create
spreadsheets of data and display them as spreadsheets, charts, or graphs. Lotus 1-2-3 offers
up to 256 pages of data, built-in functions and 3-D charting capability.

In the CARDS library the following are available for the component Lotus_123 as a briefing
system:

* Product evaluation reports in ASCII and postscript formats
* Product assessment on line in model
* Product description in ASCII format

3.7.3 Database User Interface

_’h.‘. -~ o= -
dutabase_esar_imerfate .’-.m database_DBFE——a—phw
\\ - -
q__’ o

database_froatand

Figure 3-14 Database_User_Interface and its descendants

A database user interface (Figure 3-10) provides a means for the user to interact with the database
engine. A typical graphical user interface may provide the user with menus, buttons and/or icons
with which to access the database.

3.7.4 Database Front-End

The database front-end is used to query the database and praduce reports on the database tables.
A database front-end provides an interface for the operator of a database to generate structured
query language commands. The database front-end should be able to support ad-hoc queries to
the database. The database front-end is responsible for the look and feel of the queries to the
database. The database front-end also interfaces with the operational database through a database
broker.

The database front-end should:
* Provide tools for creating a robust application interface.

* Provide basic transparent data handling, such as automatically creating default forms
based on existing tables.

Page 28

STARS-VC-B015/002/00 31 May 19%4

e Simplify menu creation and maintenance.

» Make it easy to incorporate SQL queries in an application.

» Provide a report layout facility that lets the user easily create a report.
* Provide debugging utilities.

* Have satisfactory response times.
3.7.5 Multi-Database Database Frontend
A multi-database database front-end can access multiple database management systems.

3.7.5.1 SmartStar

SmartStar Vision is a workstation-based software environment for developing "Motif-to-SQL"
database applications with little or no coding. It was developed by SmartStar Corporation and
has been in release since November 1992.

The application development environment is very impressive. In addition to the usual Interactive
SQL (ISQL), 3rd Generation Language (3GL) library interface, and 4th Generation Language
(4GL), SmartStar Vision contains "NoGL." "NoGL" enables a user to create a Graphical User
Interface (GUI) databases without SQL, 3GL., or 4GL. It uses menus, buttons, and icons. Once
taught about the basics of what a database is, even the most inexperienced user could create
effective databases.

SmartStar Vision allowed databases to be developed independent of the physical database type(s)
in use. This was accomplished using SmartStar Vision’s ANSI-SQL database called Logical
Database (LDB). The LDB dictionary stores logical mappings to tables in data files or physical
databases.

SmartStar Vision currently supports Oracle, Sybase, and Ingres database management systems.
SmartStar Vision was evaluated in conjunction with Sybase.

SmartStar Vision supports both user interface and database client/server connection. SmartStar’s
GUI client/server support enables any X-compatible device to display SmartStar Vision running
on another computer through a remote login.
In the CARDS library the following are available for the component smartstar:

» Product evaluation reports in ASCII and postscript formats

* Product assessment on line in model

* Product description in ASCII format

Page 29

 STARS-VCBO1S/002/00 31 May 199

3.7.6 Mapping System

o ﬂl_/-—’.
-+

_’ -}
mapplag_system

Figure 3-15 mapping_system and its descendants

A mapping system (Figure 3-11) is a component class designed primarily for the display and
manipulation of spatial data and information.

3.7.6 1 OILSTOCK

OILSTOCK is a high resolution interactive graphics system. In addition to data display, analysts
can draw geopositional overlays on OILSTOCK maps to produce reports or amplify information.
OILSTOCK uses the CIA World Database II (WDBII) as its foundation for vector maps and
the Defense Mapping Agency’s (DMA) ARC Digitized Raster Graphics for high quality raster
maps. OILSTOCK reads Digital Terrain Elevation Data to conduct a visual line of site analysis.
Advanced features include ELINT/Direction Finding capabilities and calculating satellite
footprints. OILSTOCK also suppoits cartographic overlays and numerous map projections. In
particular, OILSTOCK is designed to track airborne targets, including aircraft and satellites, and
seagoing vessels.

OILSTOCK is accompanied by excellent harc-copy manuals, making it easy to install and
evaluate. The organization of the manuals makes them easy to use as a reference and a tutorial.

In the CARDS library the following are available for the component OILSTOCK:
« Product evaluation reports in ASCII and postscript formats
» Product assessment on line in model
* Product description in ASCII format

3.7.7 Geographic Information System

A Geographic Information System (GIS) is used for presenting and manipulating information in
a geographical context. In basic terms, GIS links tabular data as found in a traditional database

Page 30

STARS-VC-B015/002/00 31 May 1994

with the visual world of maps and charts. This has proven to be an efficient method of analyzing
data and is becoming very wide-spread.

GIS comes in basically two graphic formats: vector and raster. Each type is used to solve dif-
ferent types of problems. Vector data is easily scaled and identified. It is simple to select vector
features to be displayed, while ignoring unwanted data. Unfortunately, vector data is very ex-
pensive to collect and encode.

Raster data, on the other hand, is inexpensive to produce, since it basically consists of scanned
pixels of data. The data looks real, or at least as real as the source of the data. It, too, has 1its
disadvantages, in that it is expensive to store and virtually impossible to update without adding
rescanned images. The ability to support both vector and raster processing has greatly increased
the usefulness of GIS and has fueled its wide-spread use and increased availability in recent
years.

A GIS should provide the ability to add well-defined standard symbols to 2- and 3-dimensional
maps, and provide tools to perform analysis on both the maps and added symbols. Typical
analysis requires polygon overlay, network routing, address geocoding, and spatial statistics.
Communicating with a database is necessary to add dynamic and static data to the view of the
map.

Many GISs can also interface with output from computer aided design (CAD) systems and
existing tabular data.

3.7.7.1 GRASS

GRASS is a public domain GIS that is popular within both the government and academic
communities. It was originally developed by the Construction Engineering Research Laboratory
of the United States Army. Originally designed for resource analysis, it has since been expanded
and extended to perform a wide variety of applications involving the display, manipulation, and
analysis of spatial data.

The primary advantages of GRASS are its display and analysis capabilities; and its ability to
be extended and used in a variety of methods. GRASS is comprised of two modules: a C
function library and a stand-alone system. Both provide a large degree of functionality and can
be extended either through a client application with the function library or by developing custom
commands via the stand-alone environment.

The flexibility of GRASS makes it an excellent addition to a CCL. because of the diverse and
critical requirements of a command center.

In the CARDS library the following are available for the component grass:
« Product evaluation reports in ASCII and postscript formats
* Product assessment on line in model

» Product description in ASCH format

Page 31

- e g O ol Nl OF OGN OF OB U Gk MO O G UN GD ON b |

STARS-VC-B015/002/00 31 May 1994

* Product source code

3.7.8 Message Translator/Validator Generator

_.:ﬂ_ﬂ-_w’— =h

Figure 3-16 message_translater_validator_generator and its child

The message translator/validator generator (Figure 3-12) is a component class that produces
other components. This particular node produces or generates systems that perform the tasks
of message translators and validators. Typically generators produce source code and it is then
the responsibility of the application developer to compile the code and perform any necessary
integration.

3.7.8.1 GBMV

The GCCA specifies a component for message translation and validation (MTV), for the
processing of encoded messages. The Grammar Based Message Validator (GBMV) provides
the validation functionality, creating validators capable of processing character-based encoded
messages. Users of the GBMV can produce validators for a wide range of character-based
message formats, with little training and a basic knowledge of regular expressions.

The GBMYV runs under UNIX and incorporates the Ada-based compiler generation tools Aflex
and Ayacc, developed at the University of California - Irvine. An Ada compiler is required for
the compilation of these tools, and for the compilation of the validator code generated by the
GBMV.
In the CARDS library the following ‘are available for the component GBMV:

* Product evaluation reports in ASCII and postscript formats

* Product assessment on line in model

* Product description in ASCII format

* Product source code

* Product test executable code

< Product user manual in postscript format

Page 32

STARS-VC-B015/002/00 31 May 1994

3.7.9 Network Manager

Pt

swtwerk_mamager

Figure 3-17 network_manager and its child

A network manager (Figure 3-13) is a component class designed primarily for the tracking, man-
agement and control over physical and local network resources connected together via a LAN.

3.7.9.1 XNetManager

XNetManager is a package of public domain software components and enhancements to support
the five major functional areas of network management required by the GCCA: fault management,
configuration management, accounting management, performance management, and security
management. XNetManager v1.0 is comprised of three public domain packages: Xnetdb-v2.10
from the Ohio State University, XNetmon-v1.0 from the Delft University of Technology of
Holland and xnetmon-v1.1 from the University of Wisconsin.

XNetManager has proven to be functionally adequate for a portion of network management for
a GCCA based on the requirements set forth by the domain criteria. XNetManager provides
many basic functions of network management, specifically in the areas of fault and performance
management, and is deemed an adequate tool for assisting the network operation manager or
system administrator in getting a handle on an operational local area network.

STARS-VC-B015/002/00 31 May 1994

3.7.10 Office Automation Software

g
-*::..< L

aser_agem *--—;-r

_’Il
'll < —A’Dlé l((g1

office_amtomatisa_software snounnt

o

o—por _/ " desiaer_pasisnar

WM _Precessor——a—hoe

arbisr 1

Figure 3-18 office_automation_software and its descendants

Office Automation (Figure 3-14) is an augmentation to the main mission support capabilities
and includes applications such as word processing, spreadsheets, and graphics generation. It is
able to interface to the database and other internal management information systems. This com-
ponent may be used in conjunction with the briefing preparation/presentation or other mission
operations. It also provides electronic transfer of informal user messages e-mail over prescribed
LAN segments. It includes functions such as mail storage, retrieval, mail broadcast, etc.

3.7.11 Electronic Mail Software

Electronic mail (e-mail) is a required office automation function. It permits routing of incoming
mail based on controls established by supervisory personnel using plain English addresses. The
e-mail component must be able to support different file types from within the same message.
This includes ASCII, graphics, scanned images, FAX, spreadsheets, CAD drawings, and binary
files. Other functions includes the capability to:

» Designate different user classes and access levels.
+ Locate stored messages by sender, receiver, keyword search, or text string.

* Set up bulletin boards, LAN-wide aliases, and distribution lists.

Page 34

- R O G gl uE v GE B Uk o ok u) U G B um BB an

STARS-VC-B015/002/00 31 May 1994

There are two basic sub-processes of e-mail that implement these various capabilities:

1. Message Transfer Agent (MTA) - This process is responsible for the actual transmis-
sion and reception of mail messages across the network (both internal and external).

2. User Agent Process (UAP or UA) - This process is the front-end or user interface to
the MTA.

3.7.12 Message Transfer Agent

An e-mail MTA is responsible for transporting mail from sources to destinations, possibly
transforming protocols and addresses, and routing the mail to the appropriate recipients.

The MTA often has several components:
* Routing mechanisms
* Local delivery agent

* Remote delivery agent

Many MTA’s have all of these components. In other cases, it is possible to replace certain
components for increased functionality.

3.712.1 PP

PP is a public domain message transfer agent in the e-mail component class, intended for high
volume message switching, protocol conversion, and format conversion. PP supports the 1984
and 1988 versions of the CCITT X.400 services and protocols. Many existing RFC 822 based
protocols are also supported, along with RFC 1148 conversion to X.400.

PP is an appropriate replacement for traditional UNIX MTAs such as MMDF (Multichannel
Memo Distribution Facility) or sendmail.

With a clean interface for message submission and delivery (e.g., support for both MMDF and
sendmail style mailboxes), most widely available MTAs work in conjunction with PP to provide
a fully functional e-mail system. It was specifically tested and worked well with Z-Mail (see
section 3.6.13.1), MH (with and without the metamail MIME patches), XMH (with and without
the metamail MIME patches), sendmail, elm, xmail, and OpenWindows mailtool.

In the CARDS library the following are available for the component PP:
* Product evaluation reports in ASCII and postscript formats

¢ Product assessment on line in model

Page 35

- e ok AN ol o N o @G U B0 e 0 R Gk B R B

" STARS-VC-B018/002/00 31 May 1954

* Product description in ASCII format
* Product source code
3.7.13 User Agent

An e-mail user agent (UA) is the user interface to the e-mail system and minimally provides
the functionality required to view incoming mail and compose outgoing messages. In support of
these functions, the UA must be able to delete, print, store, reply to, and forward mail messages.

User agents typically have additional support for mail manipulation, including sorting, folder
operations, and keyword searches of message content. More advanced features include
reading/composing mail messages containing arbitrary/non-text data (attachments), modifying
headers, notifying the sender when the receiver has read the mail, etc.

3.7.13.1 zmail

Z-Mail is a UA of the e-mail class of components maintained by Z-Code Software Corporation
in San Rafael, California.

Z-Mail provides extensive message composition capabilities, including the ability to include file
formats such as binary, PostScript, bitmap, fax, and audio with a mail message. Z-Mail also
provides useful message searching and sorting capabilities: users can search for patterns within
the messages or search for messages based on single or multiple expressions. Actions can then be
taken on those messages matching the expression(s). Messages can also be sorted in ascending
or descending order on multiple keys.

Z-Mail offers a scripting language, Z-Script, for creating message filters and other functions that
help to automate management of mail. Z-Script allows a user to create custom defined buttons,
user defined functions, and attach Z-Script to a mail message.

Some other important features of Z-Mail include: the ability to perform any action on a group
(tagged) of messages, on-line help, the ability to issue shell commands from within the mailer,
notification to the sender that a message has been received, font editing, and color editing.
In the CARDS library the following are available for the component zmail:

» Product evaluation reports in ASCII and postscript formats

+ Product assessment on line in model

¢ Product description in ASCII format

3.7.13.2 XMH

XMH is an e-mail UA whose basic configuration consists of two public domain packages, MH
and xmh. MH is a text-based user agent, while xmh provides an X-based user interface to MH.

- S T O gl " On ex @ Uh B T R B\ " s e o .

STARS-VC-B015/002/00 31 May 1994

MH differs from typical UAs in that all of its commands are separate executables, providing the
ability to execute MH commands from UNIX shell programs and source code. xmh provides
graphical user interface (GUI) functionality by making calls to the MH programs.

Two other packages, metamail and xlbiff, have been identified for use in conjunction with XMH
to provide required functionality. Metamail converts XMH into a MIME (Multipurpose Internet
Mail Enhancements) compliant multimedia UA (although message creation is supported only in
the text mode). x1biff alerts the user of new mail.

Standard user agent functionality is supported, including: viewing, creating, forwarding, replying
to, printing and deleting mail; folder operations (creating, opening, saving mail to), and tagging
messages for group operations. XMH also supports sequences - associating a group of messages
with some name based on characteristics of those messages.

Metamail provides the ability to include arbitrary, non-text data in a mail message. A message
can be separated into multiple parts, and transmitted as separate mail messages. Another notable
feature is that of including "pointers” to data instead of the data itself (e.g., & file at a remote
site). metamail will retrieve the data when the message is read.

As for architectural constraints, XMH has direct MTA support for MMDF (Multichannel Memo
Distribution Facility), MMDF-II, sendmail, and zmailer. MTAs providing interfaces based on
these four transfer agents will also work with XMH.
In the CARDS library the following are available for the component XMH:

* Product evaluation reports in ASCIHI and postscript formats

* Product assessment on line in model

* Product description in ASCII format

* Product source code
3.7.14 Spreadsheet

Spreadsheet is a component class facilitating the entry of tables of numbers. Spreadsheets allow
users to specify equations that calculate other table entries based on the user input. Spreadsheets
often allow users to create bar charts, pie charts and other graphical presentations of selected
data from the numerical tables.

3.7.14.1 Xspread

Xspread is a public domain spreadsheet based on the spreadsheet driver program SC. It was
developed at the University of Wisconsin at Milwaukee. There is help available, documentation,
source code and an ftp-site listing on-line.

Page 37

In the CARDS library the following are available for the component xspread:
* Product evaluation reports in ASCII and postscript formats
* Product assessment on line in model
* Product description in ASCII format

* Product source code

3.7.14.2 lotus123 (spreadsheet)
lotus123 is a commercial spreadsheet software package. This package allows the user to create

spreadsheets of data and display them as spreadsheets, charts, or graphs. lotus123 offers up to

256 pages of data, built-in functions and 3-D charting capability.

In the CARDS library the following are available for the component lotus123 as a spreadsheet:
* Product evaluation reports in ASCII and postscript formats

* Product assessment on line in model

* Product description in ASCIH format

3.7.14.3 wingz_ss
Wingz is a commercial spreadsheet package. It has very extensive graphic capabilities with
3-D imaging available as well as a Hyperscript language to enhance user documents. Wingz is
available for all the major graphical interfaces, making it very portable and usable.
In the CARDS library the following are available for the component wingz_ss:

* Product evaluation reports in ASCII and postscript formats

* Product assessment on line in model

* Product description in ASCII format
3.7.15 Word Processor

A word processor allows for the creation and modification of textual documents. Capabilities
normally include importation of graphics, setting of font styles and sizes, creation/modification of
paragraph formats, etc. The most common form of interacting with a word processor is through
a WYSIWYG (What You See Is What You Get) style of graphic user interface. Many common

Page 38

R e S U N GE RSN VR D W NS U W R ER A

STARS-VC-B015/002/00 31 May 1994

formats exist for storing documents created with word processors. These include: PostScript,
Standard Generalized Markup Language (SGML), EDI, and other vendor specific formats along
with ASCIL

3.7.15.1 Arbortext

The Arbortext ADEPT Series provides a structured approach to documentation preparation. The
ADEPT Series includes two products aimed at structured document preparation:

e SGML Editor - a text editor for creating and editing SGML documents.

» SGML Publisher - provides the same tools as the SGML Editor, but adds
previewing and printing capabilities.

In the CARDS library the following are available for the component arbortext:
* Product evaluation reports in ASCII and postscript formats
* Product assessment on line in model

* Product description in ASCII format
3.7.16 Desktop Publisher

Desktop publishing systems are similar in capabilities to word processors but with advanced
features. Some of these advanced features include: the capability to create/edit graphic figures
and images within the system, and functionality for. specifying the layout of the document.

3.7.16.1 FrameMaker

FrameMaker is a Commercial Off The Shelf (COTS) component facilitating WYSIWYG creation
of formatted reports with embedded graphics. FrameMaker is an advanced publishing tool that
integrates word processing, graphics, page layout, and book building. It also allows users to
import various document and graphics formats.
In the CARDS library the following are available for the component FrameMaker:

-+ Product evaluation reports in ASCII and postscript formats

¢ Product assessment on line in model

« Product description in ASCHI format

Page 39

STARS-VC-B015/002/00 31 May 19%4

3.8 Reference Model

In the structural, AdaKNET portion of the model, the model closely reflects the generic
architecture established by PRISM along with requirements information from the DISA CCDH
[DISA91]. What has changed is the way hardware and software components, that provide
services to higher level application software, are organized. This new organization, called an
application platform, was derived from the PRISM Technical Reference Model (Figure 3-15)
which is based on the NIST Applications Portability Profile [NIST]} and the DoD Technical
Reference Model [DOD92].

The graphic image of the PRISM Technical Reference Model is also available for viewing in
the CARDS CCL Model. The image is located at the PRISM_TRM node and is produced by
selecting the "Picture Image" action.

The concepts under application_platform_entity (Figure 3-16) provide services to higher level
application software. The application platform or technical reference model forms a basis for
defining an architecture permitting interchangeability of components within subsystems. One
main category of the application platform is application_platform_specification which includes
standards for operating systems, networking, text and graphics formats, and user interfaces,
etc. The other category, application_platform_software consists of software components which
implement the standards and specifications.

Page 40

31 May 19%4

STARS-VC-B015/002/00

SAVMILYD i SOUVND SHIAHIS T4

SHOSSAIOHd SNOUVLSAHOM

WNILSAS DNLLYHIJO INVITINOD - XISOd

(JUNinN4) JNND
(ZS11 D4u) dNNS

SADIAHIS INFWIDVNVIN NILSAS

(3unin4) JISOD

diidO1
SIDIAY3S
JIUOMIIN

{est Sdi4) SO
(1-021 Sdid) N
(st Sd14) NWX
3JV4U3ILNI
Hasn

HAONGO avnind) vau
{zs1 sdid) oS (1-221 sdid) 10S
SIDIAHIS SITIAU3S
JONVHOU3INI ININIOVNVN
viva vivd

Y CNRAIDRES AN

DSEPO] = GELUNT

BHISERCH SR

ALIHNO3S T73A3T - LWINN

RGO TONEREEEN WS

nNuo4ivid
FHYMQUVH

WILSAS
DNUVYH3d0

$301AH3S
N3LSAS

SIN3INOJINOD
YIINID
ANVNNOD

Figure 3-19 PRISM Technical Reference Model

Page 41

—— amtls ey et € seeh el aed ek e e Gk AaEh A e beh afSos Sk SeE. oS

STARS-VC-B015/002/00 31 May 1994

o
data_manegement _ssfiware

o
graphics_seflware

setwerk_sefNtware
o
application_pitform_sefiware o ™
spemting_systam
_’ o=

progrumming_steppert_software

/

o
usar_lotetface_seftwars

[-2]
data_intarcbange _spec £

-
wylication_pixtferm_astity o

data_management_ spec 2
H Qs

emall_specification [
H ar

graphics_spec I8
H o

smiwork_spet I

application _plmtferm_specification ._H ot
sperating_system_spex [

1]
progmmming_teonl_spacification {3

secarity_speac [

[-1]
system_mafagament _spat t9

/

ar
user_latarfaze_spac £

Figure 3-20 application_platform_entity and its descendants
3.9 System Composition

One of the main purposes of a domain model is to capture irformation that will help a software
engineer build a system. In CARDS, the capability to interactively build a system from reusable
components by capitalizing on information in the domain model is called system composition.
The approach used in the CARDS system composition tool is a form of knowledge-based software
engineering. Rules for composing a system are written in CLIPS [GIAR92]. The system

Page 42

STARS-VC-B015/002/00 31 May 1994

Input:

Output:

1.

composition tool uses these rules to query AdaKNET. It infers pertinent questions to ask the
user. It uses the answers to compose the chosen system.

The CARDS system composition tool performs system composition on the message processing
subsystem portion of Release 3.3 of the library, and is invocable directly from the library. The
following discussion describes the basic operation of this tool:

The tool elicits information from the user as to what system functionality is required.
These questions are based on information about message processing componernts
stored in the library and the relationships among the components represented in the
library model. Each answer triggers the selection of appropriate components for the
customized message processing subsystem being created by the tool.

System composition follows the basic process:

* CARDS library model.

* User knowledge of desired system.

* Appropriate source and/or executable code extracted from the reuse library for
the desired system.

Processing Sequence:

User clicks on Perform Action at a buildable concept node (i.e., system/subsystem).
Note that some nodes cannot be composed into a system because they cannot
function as a stand-alone entity.

CLIPS queries AdaKNET to retrieve roles that must be filled. For example, a
PRISM message generator subsystem has roles for user interface and message for-
mats. CLIPS determines from the model what versions of components are available
that implement the user interface and message formats.

CLIPS asks the user questions that allow all necessary roles to be filled.

CLIPS asks domain dependent questions relevant to the particular system being
composed.

If the preconditions for building the chosen node are met (i.e., all questions are an-
swered), CLIPS then harvests the system by collecting all the role filler information.

Page 43

o A SUENBE" ¥ W T0IN bt f NS N

o smmy ess s

It then generates calls to shell scripts which put the source/executable code together

in user specified directories.

The following is a simple example of system composition from an actual transcript for &8 PRISM
message generator subsystem. A ‘help’ file containing detsiled information about the operation

of the tool is displayed when the tool is initially invoked.

User input is in numeric form and appears after the arrow symbol ‘~>’. Commentary on the

transcript appears in italic typeface.

REEEEXRKRBRRRAKEREKEKRKRKREBRERRRKREERSRERKRRRER RS S Sk kRkk

* WELCOME TO THE SYSTEM COMPOSITION DEMO *

* (Press ENTER to continue) *

REEAERERRERKRRERREEERRERE KRR RRRRRRRRERR kR RkRk Rk kEkik kg ®

RERRRAREEERRREREREERERERESEKERRREERRERRRRREREKEERERRERK

Choose the number corresponding to
your choice below, then press ENTER:

RERERERRKEEERREERRERKREAXEEERRERRBEERKRRRERRERER QB R KRR E

1. Build the current component: message_processing
(traverse the command_center LMDL network)

2. Demo/execute the message_processing code

3. Exit (return to RLF)

e e 2k e 2 el ofe afe o e sk e e o S ek ofe e afe e e afe e e e e e 2 e o e e ok o 3o ok o o ok e e ok ook ok kR
->1
o e e e o e e e o ok ol o ok sk e et 200 20 20 ¢ 0 ok 9 9 3 ok o afe ok o e e e o e e ok ool o ok o

kel Rk e ok e ok ok ok kR kK ok ok ko

* Invoking network traversal to build the *
message_processing concept

(Press ENTER to continue)

dekkkk Rk Ekkkkgokkkikokpkkhhkkkgkkkgeiokiogikkpig
ARRRR RN R AR RRRR R RN R R R ROk Rk Rk kR dkok ok ek

kR ERRkRiokiokkgkkRiopiokikgkkkikkgkkkkkgghktorfhriikgriiogkn

Enter the directory where you would like to store

SR TR TS i N A T IVER ALY R VY

w s atem) ss sV

the message_processing component, then press ENTER.

TRREERRRkRERERERERR R kRR NO'!'E EEEREERBEREEREEREKEKEXKE

*** the directory entered must be a valid ***

***directory with write access. ***

SERERREREERBRRREERR AR REEKRRE IR ERRERRS SRR ARk Rk Rk RSk ER

->/my-dir

ERERERRERERREREERREREEREERERKBEBEERREREAREERREKERERRRERE

Which of the following do you want to include
for your message_processing component:

BRRRRRERREREERERKERRKREEREEREEREKERRERE SRR B EREERRE R R R kR kR

Source code only
Executable(s) only

Both source code AND executable(s)
->1

RERRERERERREEEREEARRRRERREER KRS RRREERREEREKEEEREERR KRR

THE CURRENT CONCEPT message_processing

(has role) translates_validates

(of type) message_translator_validator
REERRERARKERRREKRRERRREERRERRRKRRERREERRRBERBEEREERRERKR

Select one of the following - if no choice

user choice is desired, choose the number for ‘None’,
then press ENTER

(type ‘exit’ to return to RLF)

deaak ok ok kool e de sk o oo ke o ok ook o s ok e el il ok sl sk ook okl ek ko

1. MTV

2. None
->1

FRER Rk kR ok fokiokok ko dok ikl gokoeodok ok gok Kok Rk Rk Rk Rk

Page 45

4

STARS-VC-B015002/0 ' R

THE CURRENT CONCEPT MTV
(has role) processes

(of type) gec_m _format

SEEERERRREEREBREREKREREREEERRBBRKRR R LR RKEEBEREEE LA ERE

Select one or more of the following,
then press ENTER

(type ‘exit’ to return to RLF)

REREEREEERRPEREERBNERREREREREERRRREREEFRREERRER KR KERKKEE

1. e3a

2. intercept
3. nudet
4. roccsocc

5. unsecure_tadil
->2

kbkkkkkgkkgktorkkkkikkkkkhkEkkrkERhkRRiiokkkkrkRrRRRaRkk

THE CURRENT CONCEPT message_processing
(has role) message_source

(of type) message_generator

ERkERERRRRK Rk kR kkkE e kgrRkik kbR ok krRRRpkkkkkkkk

Select one or more of the following,
then press ENTER

(type ‘exit’ to return to RLF)

dcro Rk ok ok ok B ok ok R AR A AR ook R o ok e e ok sl s ol ik o ok ks ok e e ok

ascii_prism_msg_gen
bb_prism_msg_gen

->1

Page 46

STARD-VL-BULNAUNAN

Note: Interaction omitted where user is queried for

the interface_type of ascii_prism_msg_gen, the X11 release

to use, and the type of message format that the ascii_prism_msg_gen
should generate.

ERBERB AR LR ER KR RRERRERRKBREREREERREEREREERR SRR RRRER

THE CURRENT CONCEPT message_processing
(has role) component_communication
(of type) interprocess_communication
SRRk ekRfhgiekkiciegeieioeiill b g ok gkoko ook geojodkc ookl Kok ok

Select one of the following - if no choice is desired,
choose the number for ‘None’,
then press ENTER

(type ‘exit’ to return to RLF)
fkkk gk g gk ook gk g fe gk gk g dede ek g ik i gk ok ko ok deok
1. dec_message_q
2. plain_sys_man
3. sys_man_ingres
4. sys_man_sybase

5. None

->2

SRR ERERE kKRR RRER R RBARRA ARG Rk ok g o koo g e oot ko ok R e ok ok

hkdrfkioki ko Rk gRrR Rk Rk kR R RRRRR kR goRORR R R Rk Rk Rk Rk

END OF NETWORK TRAVERSAL ALGORITHM
READY TO INVOKE DOMAIN-DEPENDENT QUESTIONS -

PRESS ENTER TO CONTINUE

ERRRAREEERERRRERRRRERRERERABRERRRERERKREE R ERRRREEERE Rk E

SRR RAE R R ERARRRRERKRERRRARERERRERRRRR R RERERRBERRER R IR R

sexxppasnhkrekerkk AROUT TO HARVEST Rk REkkRE Rk kR kR kK

Page 47

2 Y

-
I 'II.I lll' ...' 'Il. 'II. 'II. '.l' 'l.l 'Il. 'I.. 'II. 'lll '.l. ..I. |.l.| 'l.' 'll. .l..' .II.

ASCIH PRISM MESSAGE GENERATOR
PRESS ENTER TO CONTINUE

FEERERERERREKREERERERE LR RRRRE R R DR R KRR Rk KRRk Sk p Rk

SRREEBRRREERRKKEREREEEREREEREERRRRREEERRERERRRERRRR KR RS

COMPONENT RETRIEVAL Date: Thu Mar 25 09:06:37 EST 1993
COMPONENT SELECTION:

Component: ascii_prism_ms _motif -

ASCII PRISM Message Generator

Message Mix: 60,0,20,20

Windowing System: Motif Graphical User Interface
Target Directory: /my-dir/ascii_prism_msg_gen_motif
Packaging Content: Source Code Only
Extracting ascii_prism_msg_gen_motif/src . . . Done.
COMPONENT RETRIEVAL COMPLETED
Press RETURN to EXTT!

RERERERRRE R R R TR R R RRE RN ok e Ak e e ook s o ok o o s ook sl sk ko Ak ok ke ok

kR RRkkkR R dokkok ek defe e ik ook ik ok ek ol e e ok ok o o e e ool e ke ke ok

SEERREREEERkkRRgRRRRiR ABOUT TO HARVEST *¥#*%kknkikkhikkk

PLAIN SYSTEM MANAGER
PRESS ENTER TO CONTINUE

RkRkERgkRRRRiokkkRERkRRRERRERR R R KRR ok ko gkl kR Rk R kokoRkkk

SEREEKAREERRERRRERREERERRRE Rk Rk kgl k ki khhgRkdkkik

COMPONENT RETRIEVAL Date: Thu Mar 25 09:07:11 BST 1993
COMPONENT SELECTION:

o oteumy wvw s

Page 48

W ATRENI™ ¥ AN A e U

Component: plain_sys_man -

PRISM System Manager without MTV.
Target Directory: /my-dir/plain_sys_man
Packaging Content: Source Code Only
Extracting plain_sys_man/src . . . Done.
COMPONENT RETRIEVAL COMPLETED

Press <return> to EXIT!
a2l e e ol e e a2 a0 2k ol e o o ok s o ok ki o o ok i o ks af e 2 o ok e e 2 ko o ok e B ok afe ke ok ke e e R ke ko

REKEEEEERRRRRERERRRERRRERRRRRRR R KRR R EE R Rk e R R Rk g R R Rk R kR

P2 22 2 222 22t 2Rt Ea s L] ABOU‘T TO HARVEST ***%kkkkkisktkk

MTV
PRESS ENTER TO CONTINUE

de ek geafeofop ook ook gk ko ek de ek ek e sk ok ek sk okl ke ok ok gk ok kR R

Rk BgekkkRR g kikoriokkdodokkokokordgdedk kokiok ki fokkkok foksk fokkikk

COMPONENT RETRIEVAL Date: Thu Mar 25 09:07:32 EST 1993
COMPONENT SELECTION:

Component: mtv - PRISM Message Translation and

1. Validation (MTV) Standalone.
Target Directory: /my-dir/mtv
Packaging Content: Source Code Only
Extracting mtv/src . . . Done.
COMPONENT RETRIEVAL COMPLETED
Press <return> to EXIT!
Configuration completed.
Press <return> to continue.

3.10 Component Qualification Tool
The Component Qualification Tool provides our users a method of qualifying potential

components within the command center domain. The tool also provides staff software engineers
the ability to qualify potential components for inclusion in the CARDS CCL Model.

Page 49

YV, VWL TNV VeIV ey

Each component class has relationships, or attributes, that a component can potentially fill. These
relationships describe how a component fits within & particular domain such as the command
center domain. To qualify a component, a component is evaluated against the relationship of
the component class. This relationship is of two types: critical and non-critical. The critical
relationships are the relationships that must be met for the component to be "qualified” into
the component class. The non-critical relationships are ones that are found frequently within
the domain of interest, but a component is not required to have. For example, for a8 command
center domain in the component classes of office automation software, a critical relationship
could be that the software must be able to input ascii form te. |, but a non-critical relationship
could be that the component could have a spellchecker. If a component does not meet all critical
roles of a component class, it cannot be considered "qualified." If a component meets all critical

, relationships, but not all of the non-critical relationships, it is "qualified” for that particular

component class.

By quering the RLF network, the component qualification tool finds the criticial and non-critical
roles of the component class. It then prompts the user with questions pertaining to the relationship
of the component class that they are qualifying against. When all the questions are answered,
the tool then generates a report and tells the user if the component has "passed” or “failed”
qualification. If the component has passed, the RLF LMDL code is generated for inclusion into
the library at a later time.

Components which provide the action, "Qualify Component”, are included in Appendix C,
Library Actions.

3.11 System Demonstrations

The CARDS CCL Model provides users the ability to evaluate software components through
demonstrations. In some cases the demonstrations will be full working versions of the software
with no limitations; other cases will be demonstration versions of the software supplied by the
vendor or a "screen capture” walk-through of the software.

3.11.1 ascii_PRISM_msg_gen

The ascii_PRISM_msg_gen component generates and injects simulated ASCII messages into
the Generic Command Center (GCC) IPS. It is configured by the command center operator
through the user interface and injects messages into the GCC IPS through the external interfaces
component.

3.11.2 bb_PRISM_msg_gen

The bb_PRISM_msg_gen component generates and injects simulated bit-based messages into
the GCC IPS. It is configured by the command center operator through the user interface and
injects messages into the GCC IPS through the external interfaces component.

Page 50

(S F W VLR Ll I ATV SVFRV VI VRN

3.12 Interoperability

In CCL release 3.2, CARDS implemented trilateral interoperability, i.e., interoperation between
CARDS, ASSET, and DSRS. CARDS library interoperability uses & client/server architecture
to retrieve components from a remote library. When a CARDS user requests an abstract,
description, or an entire component residing at another library, a program is run which connects
to a central CARDS interoperability server running on the CARDS host machine in Fairmont,
WYV. This server then verifies the credentials of the user, and connects to the remote library to
retrieve the component files. The files are retrieved over the Internet using TCP/IP.

The user does not need to do anything special to work with components residing at another
library. Everything is handled for them.

The CARDS library includes components from two remote libraries - DSRS in Falis Church,
VA, and ASSET in Morgantown, WV,

3.12.1 DSRS Interoperability Components

The following four interoperability components were entered into the CARDS Command Center
domain for Release 3.2, but actually exist within the DSRS Library. These components are
modeled as individuals in our library, but the actual source and binary files reside in the DSRS
Library. Actions exist at the individual nodes for Display Abstract and Extract Contents.

3.12.1.1 Screen_And_Data_Manager_Package

Screen_And_Data_Manager_Package is an Ada package that provides 45 routines for: (1)
managing a screen definition; (2) displaying data to a user at a terminal; and (3) retrieving
data from a user at a terminal. All of the routines in the package operate on variables of
types defined in the package specification. A screen is defined to be an array of records, where
each record defines a field on the screen. Screen_And_Data_Manager_Package is the child of

ity_interface_software.

Reuse of this package would be valuable for a system required to maintain, modify, and query
a screen definition, as well as to display and retrieve data to/from a user at a terminal, provided
an implementation of Terminal_Interface_Package is available.

3.12.1.2 Generic_Report_Handler

Generic_Report_Handler package was designed to be a package that facilitates the generation
of printed reports. The user supplies procedures that handle the generation of column headers,
footers, etc., and the report handler calls upon user-supplied procedures as necessary. The
primary advantage of using the package lies in the "virtual page" abstraction that frees the user
from the burden of ensuring that page feeds are done at the right time. Generic_Report_Handler
is the child of tty_interface_software.

Page 51

SLARI VL DULILN se srawy ass

3.12.1.3 Safe_IO

Safe_lO is a package that allows the user to input data types from the keyboard while checking
the input for errors. A procedure for checking input of characters for a proper sub-range of the
character set is provided. When an error is encountered, an error message is displayed and the
user is allowed to re-enter. Output routines are provided to allow the user to do I/O with only
one instantiation. Safe_lO is the child of 1ty _interface_software.

3.12.1.4 String_Utilities_Package

String_Utilities Package is an Ada package that provides operations for parsing and maintaining
strings and text. The subprograms in this package provide the user with the capability to input
an entire string or just a segment of the string without losing the index position within the
original string. The largest string length this package can support is system dependent, i.e.,
the largest positive integer supported by the system. String Utilities_Package is the child of
tty_interface_software.

3.12.2 ASSET Interoperability Components

The following three interoperability components were entered into the CARDS Command Center
domain for Release 3.2, but actually exist within the ASSET Library. These components are
modeled as individuals in our library, but the actual source and binary files reside in the ASSET
Library. Actions exist at the individual nodes for: Display Abstract, Display Relationships
Graphically, Display Relationships Textually, and Extract Contents.

3.12.2.1 Ada_SQL_bindings

A standard binding between Ada and SQL (Structured Query Language), the ANSI and DoD
standard for accessing commercial relational database management systems (DBMSs). SQL was
not designed to be embedded within applications in general-purpose programming languages,
such as Ada. Previously developed Ada-SQL bindings have had various technical drawbacks.
Ada_SQL_bindings is the child of language_bindings software.

A prototype Ada-SQL binding was built by automating the SQL Ada Module Extension
methodology (SAME). SAME is a method for building Ada applications that access DBMSs
via SQL. SAME extends SQL by exploiting the features of Ada.

3.12.2.2 Optimization_and_Planning_Tools

This package provides tools for mission planning. There are general algorithms lending
themselves to generic reusable software packages, including the SCT terrain masking algorithm,
the two-dimensional implicit-stage multi-pass dynamic programming algorithm, the two-
dimensional retrieval algorithm, the three-dimensional extensions of the MDPA and route
retrieval algorithm, and the Dijkstra shortest path algorithm. Optimization_and_Planning Tools
is the child of component_class.

Page 52

SLAKD:VL-BULIWLWN ey e

3.12.2.3 Reusable_Image_Processing_Package

The Reusable Image Processing Package is a set of reusable Ada packages performing
various image processing functions, including image enhancing and image statistic modeling.
Reusable_Image_Processing_Package is the child of component_class.

3.12.3 Interoperability Metrics

During the implementation of trilateral interoperability, staff developers added a feature to the
CARDS Library to automate the collection of interoperation metrics. The process was enlarged
to include all components in the CARDS Library, both local and remote.
Interoperability metrics collection is transparent to the user. The metrics collection process is
invoked by the CARDS Library actions: Extract Contents, Display Abstract, and Provide
Description. The following infermation is logged into a system file:

* date

s time

* user account name

* library origin (e.g., CARDS, DSRS, ASSET)

* type of transaction (extract, display, or provide)

* success/failure

* transaction time

* component acted upon
3.13 Future Directions/Enhancements
3.13.1 Structural Changes

The main thrust of future development of the CCL Model will be to continue adding to the
knowledge contained in the model to support system composition and other tools.

Currently the representations of software architecture details in the model are not fully "fleshed
out". Future plans call for developing improved representations for software architecture within
the model, possibly supported by other tools. These improved representations will then be used
to fill out the software architecture part of the model.

Page 53

S LLANI* ¥ ALV LSRNl N

3.13.2 Action Changes

The Qualify Component action, which allows the user to see or obtain a printout of the optional
and required features of the current category, will be added to more nodes in future releases of
the library.

A Feedback action allowing the library user to send feedback to the CARDS hotline will be
added to the library. The Obtain Help action will be added to more nodes.

Each of the remote actions will be merged with their local counterparts. The intention is that the
user will see the same interface, regardless of whether the component is stored in the CARDS
Library or another library with whom CARDS interoperates.

3.13.3 Anticipated Qualified Components

3.13.3.1 UNAS_SALE (Universal Network Architecture Service/Software Architect’s Life-
cycle Environment)

There are three product components that come with this product:

e UNAS development kit: a suite of portable, reusable building blocks (a library of
pre-existing “primitive parts"), tools, and services. UNAS primitives represent a
very high level language for architecting a distributed software system.

» Software Architect’s Lifecycle Bavironment (SALE): a graphical design environ-
ment for designing systems out of UNAS parts. The environment is
knowledge-based, where UNAS design rules and performance characteristics consti-
tute the knowledge base. The environment generates source code for an architecture
skeleton; essentially, it provides the equivalent of 8 UNAS compiler translating the
graphical and textual UNAS source code for any UNAS supported platform.

* UNAS Runtime Kit: a runtime library of scalable components for controlling, in-
strumenting, monitoring, debugging, tuning and reconfiguring a network of UNAS
objects.

CARDS will attempt a two step approach to implementing UNAS and SALE into the CARDS
Library:

1. Placing it into an existing component class defined within the GCCA. Currently, it is
placed within the (unqualified) CASE_tools component class; however, it may be
later qualified under another class. Possible component classes include interprocess
communications, system status and control, and/or network monitoring.

2. Using UNAS and SALE in an ongoing CARDS survey of software architecture con-
cepts and technologies. The goal of this longer-range activity is to capitalize on the

Page 54

D A LA ¥ LAV L I Ny W . ey e

software architecture/survey to provide a basis for qualifying software
architecture-oriented CASE technology against a reference model of software archi-
tecture concepts; this would be analogous to the way CARDS qualifies command
center components against 8 GCCA.

3.13.4 Anticipated System Demonstrations

3.13.4.1 WingZ

WingZ is a commercial spreadsheet package and has very extensive graphic capabilities with
3-D imaging available as well as a Hyperscript language to enhance user documents. WingZ
provides spreadsheet, drawing, hypermedia, and chart-making capabilities.

With the use of Datalink, WingZ can interface with Sybase and send SQL commands to the
SQL server during a briefing session. Wingz is available for all the major graphical interfaces,
making it very portable and usable.

3.13.4.2 UNAS_SALE

SALE is a COTS CASE tool assisting the software architect in developing distributed applications
utilizing the UNAS architectural design paradigm. Through SALE’s graphical user interface,
UNAS objects can be assembled using UNAS rules for building distributed applications. UNAS
is a process-based, message-driven language framework for rapidly developing distributed
applications. The final product of a SALE session is UNAS-specific Ada code for the
management of distributed applications.

UNAS_SALE, developed by TRW Systems Engineering and Development Division in Carson,
CA, provides a full working version demonstration of the product. Due to licensing agreements,
the only means to access the full working version SALE demonstration is by logging into
Solitaire, the CARDS Library server, by users with a CARDS Unix account. UNAS_SALE is
not currently qualified into the Command Center Domain, although it is anticipated to undergo
the CARDS qualification process in the future. At a later date, there will be a "screen capture”
walk-through for AFS users. Currently a tutorial exists for the UNAS_SALE component.

Page 55

Wb N A awy ey -

APPENDIX A - References

[CARDS94a] CARDS Library User's Guide, STARS-AC-
B006/000/00, Sept 93.

[CARDS94b] CARDS Version Description Document, STARS-AC-
0B007/001/00, Sept 93.

[CARDS94c] Library Operation Policies and Procedures, Volume III -

Library Development Handbook, Update - STARS-AC-
04109/002/00, 28 Feb 94.

[CARDS94d] Technical Concepts Document, STARS-AC-
03536/003/00, 28 Feb 94.

[CARDS93a] RLF User’'s Manual, Version 4.1, STARS-UC-
05156/013/00, Mar 93.

[CARDS93b) RLF Modeler’s Manual, RLF Version 4.1, STARS-UC-
05156/011/00, Feb 93.

{CARDS93c] RLF Modeler Tutorial, STARS-UC-05156/020/00, Feb
93.

[CARDS92a] Command Center Domain Model Description, STARS-
AC-04110/001/00, Nov 92.

[CARDS92b] RLF Graphical Browser User’s Guide, STARS-SC-
03065/004A/00, Jan 92.

[DCA90] Command Center System Architecture and TA/CE Guid-
ance, Defense Communications Agency, Sept 90.

[DODS1] Multicommand Required Operational Capability for
Command Centers, MROC 1-89, DoD and Joint Staff,
Feb 91.

[DISA91] Command Center Design Handbook, DISA, 91.

(DOD92] DoD Technical Reference Model, Version 1.3, Sept 92.

[ESD92] Generic Command Center Phase 2 Prototype Summary
Report, ESD/AVS Hanscom AFB, Jan 92.

[GIAR92) 4 CLIPS User’s Guide, NASA, Joseph Giarratano, Sept 92.

[KANG90] Feature-Oriented Domain Analysis (FODA) Feasibility
Study, SEI, Kang, Cohen, Hess, Novak, Peterson, Nov
90.

Page A-1

QANND Y LDV N W

D

[NIST]

[PRIES2]

Applications Portability Profile (APP) The U.S. Govern-
ment’s Open System Environment Profile, NIST APP
Special Publication 500-187.

Domain Analysis and Software Systems Modeling, IEEE
Computer Society Press, Prieto-Diaz, Ruben and Arango,
Guillermo, 92.

Page A-2

WA LMD" B TS Dot N A

action

advice

aggregation

application

application platform

architecture modeling

automated message handling

category

class

command center

component

component-based library

APPENDIX B - Glossary of Terms

A mechanism permitting & user of the RLF graphical
browser to invoke calls to the underlying operating
system, including invoking other tools.

An option offered to a user by the Reuse Library
Framework’s graphical browser which provides expert
guidance by invoking appropriate inferencers to aid the
user in navigating a model.

Relationship between AdaKNET concepts which express
attributes, characteristics, features (as the term is used in
FODA [KANG90], functional capabilities, requirements
or metrics; that is, any relationship that exists between
two concepts which is not a specialization relationship.

A system which provides a set of general services for
solving some type of user problem.

Hardware and software that provides services to higher
level application software (e.g. operating system).

The process of creating the software architecture(s) that
implement(s) a solution to the problems in the domain.

Processing of strictly formatted messages.
see concept.
see concept.

A facility from which a commander and herhis repre-
sentatives direct operations and control forces. It is or-
ganized to gather, process, analyze, display and dissemi-
nate planning and operational data and to perform other
related tasks.

A set of reusable resources that are related by virtue
of being the inputs to various stages of the software
design lifecycle, including requirements, design, code,
test cases, documentation, etc. Components are the
fundamental elements in a reusable software library.

A library that is organized around a collection of reusable
com ponents. The underlying operational concept is
that of search and retrieval of individual components.

Page B-1

DERAVAN A L W2 S {VEW 7LV, VIRV V]

concept

converged

display

domain

domain analysis

domain criteria

domain engineering

domain model

domain modeling

entity

Components found in such libraries are classified in
broad, generalized categories.

An atomic unit of the AJaKNET knowledge representa-
tion scheme, representing an idea or thing, also known
as a generic concept, a category or a class.

Said of an AdaKNET role range for which the minimum
and maximum have been set to the same value.

An aid to briefing such as video monitor or projection
system.

An area of activity or knowledge containing applications
which share a set of common capabilities and data.

The process of identifying, collecting, organizing, analyz-
ing and representing the relevant information in a domain,
based on the study of existing systems and their devel-
opment histories, knowledge captured from domain ex-
perts, underlying theory and emerging technology within
the domain.

Specifications that a potential component must adhere
to in order to obtain acceptability in the domain and
inclusion in the library. Domain criteria are & composite
of three sets of constraints: component constraints,
architectural constraints, and implementation constraints.

An encompassing process which includes domain analy-
sis and the subsequent construction of components, meth-
ods, tools and supporting documentation that address the
problems of system/subsystem development through the
application of the knowledge in the domain model and
software architecture.

A definition of the functions, objects, data and relation-
ships in a domain, consisting of a concise representation
of the commonalities and differences of the problems of
the domain and their solutions (application programs).

The process of encoding knowledge about a domain into
a formalism

A particular and discrete unit; a named product, process,
object or relationship.

Page B-2

DA ARD VY L DU/ NN

external interfaces

feature

filler

generic architecture

harvest

individual

individuation

inferencer

inherit

inheritance

instance

intermediate levels of specialization
knowledge-based software

engineering

library model

The physical connection and protocol between the com-
mand center and other information systems.

A prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems.

A role used only between individuals. The filler of an
individual’s relationship must adhere to the relationship’s
restrictions. Both the owner and the "filler” must be in
dividuals.

A collection of high-level paradigms and constraints that
characterize the commonality and variances of the inter-

actions and relationships between the various components
in a system.

The retrieval of the source and/or executable code for
components from the library into & specified directory
during system composition.

A knowledge representation of the reusable component of
the library. An AdaKNET term for Represents a specific
instantiation of a concept. Also known as an individual
concept, an object or an instance.

The relationship between an individual to its subsuming
concept. Indicates that an individual is an actual instance
of the idea represented by the concept.

(Also called rule-base) A mechanism which uses existing
facts and rules about the elements of a model to perform
reasoning about that model and deduce new facts and
rules.

see inheritance.

A mechanism whereby classes make use of the proce-
dures, attributes, and /or data defined in other classes.

see individual.
Concepts that partition a category into subcategories.

Software engineering with tools that utilize a knowledge
representation of a domain and/or process.

A model that represents the domain components and the
relationships between them.

Page B-3

DL AN VU DULIANLIWNY

library modeling

meta-model

model-based library

multilevel security

object

(role) name

operator

(role) range

reusable component

role

role restriction

rule-base

The process of building a library model that accurately
reflects the functionality and structure of the target
domain.

"model of modeling” or the knowledge-representation
formalism used to encode library models.

A library that is organized around the principle that
what matters in a repository is the context in which
reusable software components are used and the relation-
ships among components. The focus of a model-based
library is the model (requirements, architectures, design
decisions and rationales) and the soft ware which imple-
ments these models.

Information processing and communications which allow
two or more classification levels of information to be
processed simuitaneously within the same system when
some users are not cleared for all levels of information
present.

see individual.

Refers to the name of an AdaKNET aggregation relation-
ship.

A user who employs the resources of command center
software to meet mission objectives.

The number of simultaneous copies that may exist of an
AdaKNET aggregation relationship.

A component (including requirements, designs, code,
test data, specifications, documentation, expertise etc.)
designed and implemented for the specific purpose of
being reused.

An AdaKNET term which refers to an aggregation
("consists of"") relationship between two concepts.

Refers to an inherited AJaKNET aggregation relationship
which is narrowed at the inheriting concept, either by
further restricting the range or by further restricting the

type.

(Also called inferencer) A collection of rules about the
elements of a domain. A rule describes the relationships,
requirements and constraints among components.

Page B4

DL AN VLDV NI W

v ermmy wva o

software architecture

software reuse

specialization

standard descriptors

subsume

system composition

taxonomy

(role) type

workstation

High-level paradigms and constraints characterizing the
structure of operations and objects, their interfaces and
control to support the implementation of applications in
a domain. Includes & description of each software com-
ponent’s functionality, name, parameters and their types,
and a description of the components’ interrelationships.

The process of implementing new software systems using
existing software information.

The act of declaring that one concept represents a
narrowing of the idea represented by another concept.

Basic conceptual units that form the interface between
domain ar chitectures and reusable components (ie.,
high- level mini-specs for a class of components).

Having an is-a relation with a concept where the subsum-
ing concept is a larger and more abstract category (e.g.,
Xis_aZ and Y is_a Z therefore Z subsumes X and Y).

The automatic configuration of a prototype system based
on hardware and software requirements.

The theory, principles and process of categorizing entitics
in established categories.

The allowable range of values of an AdaKNET aggrega-
tion role.

An electronic hardware component of the command
center through which the user can communicate, process
information and prepare briefings.

Page B-5

STARS-VC-BUISAULW B

APPENDIX C - LIBRARY ACTIONS

Actions can be any executable command or script. If an "action” is included at a concept, the
phrase Perform Action appears on the pop-up menu when the user chooses the node which
represents that concept. Another pop-up menu appears when Perform Action is chosen. This
menu displays the action or actions available at that concept. If there are no actions at the
concept, the Perform Action option is not presented as a menu choice.

Many actions have been added to the model since the last version of this document. It is the
intention that some actions, currently invoked at a limited number of concepts, will eventually
be available at many others and that additional actions will be implemented.

The list of invocable actions and a short description follows:

Display Abstract - Display an Abstract outlining the features and capabilities of an
asset.

Display Relationships Graphically-This function displays relationships of the
library model in a graphical format.

Display Relationships Textually-This function displays relationships of the library
model in a textual format.

Extract Contents - This functon provides the ability to extract the contents of
directories and/or files from an RLF Library to a user specified target directory.

Obtain Help -This functon provides the ability to view an ascii formatted file
containing pertinent help information for a particular node.

Produce System - This function calls the System Composition Tool.
Provide Description - Displays the Description file for a particular node. The pre-
view utility is used to display the Description file. It is available at all local

concepts in the model.

Run Demo -This function allows the user to execute & demonstration in a subshell.
Demonstrations called through this action generally have a graphical user interface.

Show Assessment - This function provides the user with the ability to view a
Product Evaluation Report.

View_ message_format - This function displays information about message formats,

View Roadmap - This function allows the user to view text describing major
sections of the model.

Page C-1

DT, N LR RO IV FW VIV VONTE Y JA Ay LIPe

* Qualify Component- -This function provides the ability to view or obtain a printout
of the optional and required features of the current category.

* Picture Image- This function provides the ability to view graphic images related to
the current node.

Page C-2

